scholarly journals Silver and Gold Nanoparticles from Limnophila rugosa Leaves: Biosynthesis, Characterization, and Catalytic Activity in Reduction of Nitrophenols

2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Van Thuan Le ◽  
Ngoc Nhu Quynh Ngu ◽  
Tan Phat Chau ◽  
Thi Dung Nguyen ◽  
Van Toan Nguyen ◽  
...  

This study describes a simple green method for the synthesis of Limnophila rugosa leaf-extract-capped silver and gold nanoparticles without using any expensive toxic reductant or stabilizer. The noble metal nanoparticles were characterized by Fourier transform infrared (FTIR) microscopy, powder X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray analysis (EDX), high-resolution transmission electron microscopy (HR-TEM), selected area electron diffraction (SAED), and dynamic light scattering (DLS) method. It has been found that the biosynthesized silver and gold nanoparticles are nearly spherical in shape with a mean particle size distribution of 87.5 nm and 122.8 nm, respectively. XRD and SAED patterns confirmed the crystalline nanostructure of the metal nanoparticles. FTIR spectra revealed the functional groups of biomolecules presented in the extract possibly responsible for reducing metallic ions and stabilizing formed nanoparticles. The biosynthesized metal nanoparticles have potential application in catalysis. Compared to previous reports, Limnophila rugosa leaf-extract-capped silver and gold nanoparticles exhibited a good catalytic activity in the reduction of several derivatives of nitrophenols including 1,4-dinitrobenzene, 2-nitrophenol, 3-nitrophenol, and 4-nitrophenol.

2018 ◽  
Vol 20 (4) ◽  
pp. 2676-2692 ◽  
Author(s):  
Joakim Halldin Stenlid ◽  
Adam Johannes Johansson ◽  
Tore Brinck

Using local DFT-based probes for electrostatic as well as charge transfer/polarization interactions, we are able to characterize Lewis basic and acidic sites on copper, silver and gold nanoparticles.


2015 ◽  
Vol 39 (10) ◽  
pp. 8080-8086 ◽  
Author(s):  
Muhammad Nisar ◽  
Shujaat Ali Khan ◽  
Muhammad Raza Shah ◽  
Ajmal Khan ◽  
Umar Farooq ◽  
...  

The fluoroquinolone drug moxifloxacin (Mox) has been used to protect silver and gold nanoparticles. The nano-conjugates exhibited urease inhibition and antibacterial activity.


2006 ◽  
Vol 6 (3) ◽  
pp. 691-697 ◽  
Author(s):  
Zhenyu Sun ◽  
Lei Fu ◽  
Zhimin Liu ◽  
Buxing Han ◽  
Yunqi Liu ◽  
...  

A simple and efficient route has been employed to deposit noble metal nanoparticles (Pt, Ru, Pt–Ru, Rh, Ru–Sn) onto carbon nanotubes (CNTs) in supercritical methanol solution. In this method, the inorganic metallic salts acted as metal precursors, and methanol as solvent as well as reductant for the precursors. The as-prepared nanocomposites were structurally and morphologically characterized by X-ray diffraction spectroscopy, transmission electron microscopy (TEM), scanning electron microscopy, and X-ray photoelectron spectroscopy analyses. It was demonstrated that the CNTs were decorated by crystalline metal nanoparticles with uniform sizes and a narrow particle size distribution. The size and loading content of the nanoparticles on CNTs could be tuned by manipulating reaction parameters. Furthermore, the formation mechanism of the composites was also discussed.


2021 ◽  
Vol 19 (11) ◽  
pp. 66-71
Author(s):  
Maithm A. Obaid ◽  
Suha A Fadaam ◽  
Osama S. Hashim

The aim of this study is to prepare gold nanoparticles by a simple chemical method at a temperature of 70°C. The solution was dried on glass basest by Casting method, the rate of five drops per sample At a temperature 100 C. Then the structural and optical properties have been confirmed by X-ray diffraction, scanning electron microscopy (SEM) and Transmission Electron microscope (TEM), Fourier Transform Infrared Spectroscopy (FTIR) and spectrum.


Author(s):  
MONIKA GUPTA

Objective: This research work develops an approach to synthesize silver nanoparticles (AgNPs) by reduction of leaf extract of Catharanthus roseus plant. This study produces synthesized nanoparticles that have process-controlled attributes which make their antibiotic action highly efficient. These attributes include smaller size, proper morphology, uniform dispersion, metal ion content, and formation of functional groups. By optimizing the reduction process parameters, AgNPs gain the desired properties.  Methods: The biosynthesis of AgNPs process was performed using reaction of 10% (w/v) C. roseus leaf extract with AgNO3. The optimum conditions and concentration used for synthesis of nanoparticles were: 1 mM AgNO3, pH 5, and temperature 80°C with an incubation time of 72 h. All the above parameters were analyzed by ultraviolet-visible spectrophotometer with the surface plasmon resonance peak obtained at 440 nm. Results: Various characterization techniques were performed, namely, scanning electron microscopy, energy-dispersive X-ray, transmission electron microscopy, photoluminescence study, X-ray diffraction spectroscopy, Fourier transform infrared, dynamic light scattering, and atomic force microscopy. The results obtained from characterization confirmed the spherical morphology of the nanoparticles with size between 50 and 87 nm. In the current investigation, the antimicrobial activity of biosynthesized AgNPs was also determined using minimum inhibitory concentration and zone of inhibition methods against six different bacteria at different doses of AgNPs (100, 150, and 200 μg/ml) alone and also in combination with antibiotic-streptomycin. Conclusion: The results revealed that high concentration of AgNPs inhibits the bacterial growth. Furthermore, AgNPs revealed much stronger antibacterial action in synergy with streptomycin against antibiotic-resistant bacteria.


2017 ◽  
Author(s):  
◽  
Sharista Raghunath

The presence of dyes in effluent poses various environmental as well as health hazards for many organisms. Although various remediation strategies have been implemented to reduce their effect, dyes still manage to infiltrate into the environment and hence new strategies are required to address some of the problems. This study investigated the innovation of two cationic water-soluble polymers viz., Proline-Epichlorohydrin-Ethylenediamine Polymer (PEP) and Thiazolidine-Epichlorohydrin-Ethylenediamine Polymer (TEP) that were used to remediate selected synthetic dyes from synthetic effluent by adsorption and dye reduction. Both polymers were synthesized using monomers of a secondary amine, epichlorohydrin and ethylenediamine and were subsequently characterized and modified and their remediation potential studied. In the first study, PEP was synthesized and characterized by 1H-NMR Spectroscopy, FT-IR Spectroscopy, dynamic light scattering, and thermogravimetric analysis (TGA). Thereafter PEP was modified with bentonite clay, by simple mixing of the reactants, to form a Proline-Epichlorohydrin-Ethylenediamine Polymer-bentonite composite (PRO-BEN); it was characterized by FT-IR Spectroscopy, scanning electron microscopy (SEM)/ energy dispersive X-ray spectroscopy (EDX), dynamic light scattering (DLS), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). Adsorption studies were then undertaken with a synthetic effluent containing three textile dyes, viz., Reactive Blue 222 (RB 222), Reactive Red 195 (RR 195) and Reactive Yellow (RY 145). Various conditions were investigated including pH of the solution, temperature, sodium chloride concentration, initial dye concentration and the dosage of adsorbent used. The experimental data for all dyes followed a Langmuir isotherm. The adsorption process was found to be pseudo-second order. According to the thermodynamic parameters, the adsorption of the dyes was classified as physisorption and the reaction was spontaneous and exothermic. The data were also compared using studies with alumina as an adsorbent. Results showed that PRO-BEN exhibited better absorptivity and desorption than alumina making its use a better recyclable remediation strategy for the removal of organic dyes in wastewater treatment plants. In the second study, TEP was synthesized and then characterized by FT-IR Spectroscopy, 1H-NMR Spectroscopy, TGA and DLS. Thereafter, TEP was used to prepare TEP capped gold nanoparticles (TEP-AuNPs). Herein, two methods were investigated: the Turkevich method and an adaptation of the Turkevich method using bagasse extract. The TEP-AuNPs was characterized by FT-IR Spectroscopy, SEM, EDX, DLS and TEM. Thereafter the reduction of each of Allura Red, Congo Red and Methylene Blue was investigated with the TEP-AuNPs for its catalytic activity toward dye reduction. This study showed that the batch of AuNPs prepared by the Turkevich method had higher rates of dye reduction compared with AuNPs prepared using bagasse extract. Also the quantity of TEP used as capping agent greatly influenced the size, shape and surface charge of the nanoparticles as well as their catalytic performance: the Vroman effect explained this behavior of the TEP-AuNPs. It was finally concluded that whilst PRO-BEN, in the first study, showed excellent dye remediation properties, the second study on TEP-AuNPs showed good catalytic activity for the reduction of selected dyes, however, it was more effective at lower polymer concentration. Finally, both materials displayed good potential for the clean-up of selected synthetic dyes from synthetic effluents.


2020 ◽  
Vol 4 (2) ◽  

Metal nanoparticles possess an extensive scientific and technological significance due to their unique physiochemical properties and their potential applications in different fields like medicine. Silver and gold nanoparticles have shown to have antibacterial and cytotoxic activities. Conventional methods used in the synthesis of the metal nanoparticles involve use of toxic chemicals making them unsuitable for use in medical field. In our continued effort to explore for simple and eco-friendly methods to synthesize the metal nanoparticles, we here describe synthesis and characterization of gold and silver nanoparticles using Gonaderma lucidum, wild non-edible medicinal mushroom. G. lucidum mushroom contain bioactive compounds which can be involved in the reduction, capping and stabilization of the nanoparticles. Antibacterial activity analysis was done on E. coli and S. aureus. The synthesis was done on ultrasonic bath. Characterization of the metal nanoparticles was done by UV-VIS., High Resolution Transmission Electron Microscope (HRTEM) and FTIR. HRTEM analysis showed that both silver and gold nanoparticles were spherical in shape with an average size of 15.82±3.69 nm for silver and 24.73±5.124nm for gold nanoparticles (AuNPs). FTIR analysis showed OH and -C=C- stretching vibrations, an indication of presence of functional groups of biomolecules capping both gold and silver nanoparticles. AgNPs showed inhibition zones of 15.5±0.09mm and 13.3±0.14mm while AuNPs had inhibition zones of 14.510±0.35 and 13.3±0.50mm on E. coli and S. aureus respectively. The findings indicate the potential use of AgNPs and AuNPs in development of drugs in management of pathogenic bacteria.


2016 ◽  
Vol 15 (01n02) ◽  
pp. 1650008 ◽  
Author(s):  
Anal K. Jha ◽  
K. Prasad

Aquatic pteridophyte (Azolla sp.) was taken to assess its potential to synthesize the metal (Au) nanoparticles. The synthesized particles were characterized using X-ray, UV-visible, scanning and transmission electron microscopy analyses. Nanoparticles almost spherical in shape having the sizes of 5–17[Formula: see text]nm are found. UV-visible study revealed the surface plasmon resonance at 538[Formula: see text]nm. Responsible phytochemicals for the transformation were principally phenolics, tannins, anthraquinone glycosides and sugars present abundantly in the plant thereby bestowing it adaptive prodigality. Also, the use of Azolla sp. for the synthesis of gold nanoparticles offers the benefit of eco-friendliness.


Sign in / Sign up

Export Citation Format

Share Document