scholarly journals Evolution Law of Gas Discharge of Carbon Monoxide in Mining Extra-Thick Coal Seam of Datong Mining Area

Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Zhanyuan Ma ◽  
Feng Du

In order to reveal the evolution law of gas discharge of carbon monoxide in mining an extra-thick coal seam of the Datong mining area by the numerical simulation and field monitoring test, the 8202 working face and 8309 working face in the Tongxin coal mine are chosen as the test sites. The results show that the seepage flow of carbon monoxide gas reaches 1.854 × 10 − 8   m 3 / s in the #1 fracture after the #3 key stratum in the far field breaks in the 8202 working face, the seepage flow of carbon monoxide gas reaches 1.307 × 10 − 7   m 3 / s in the #2 fracture, the seepage flow of carbon monoxide gas reaches 4.276 × 10 − 7   m 3 / s in the #3 fracture, the seepage flow of carbon monoxide gas reaches 4.192 × 10 − 7   m 3 / s in the #4 fracture, and the seepage flow of carbon monoxide gas reaches 1.623 × 10 − 7   m 3 / s in the #5 fracture. The initial caving of the #3 key stratum in the far field occurs and collapses to the gob, when the working face in the #3-5 coal seam advances to 180 m, and the voussoir beam forms in the #3 key stratum. Besides, a shower shape was formed by the seepage flow of carbon monoxide gas, and the maximum flow in the working face reaches 4.562 × 10 − 4   m 3 / s . When the 8309 working face advances from 521.2 m to 556.4 m, the air pressure at the working face gradually rises and reaches the maximum magnitude and then begins to decrease; when the working face advances to 556.4 m, the air pressure at the working face reaches the maximum magnitude of 91.35 kPa. The gas discharge disaster of carbon monoxide in mining the extra-thick coal seam of the Datong mining area is effectively controlled by the dynamic balance multipoint control technology. The research results can be treated as an important theoretical basis for the prevention and treatment for carbon monoxide discharge disaster in mining the extra-thick coal seam of the Datong mining area.

Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Haixiao Lin ◽  
Feng Yang ◽  
Zhengzheng Cao ◽  
Yue Wang ◽  
Xiaojian Jiao

The Datong mining area is a typical double system coal seam mining area in China, where the Jurassic and Carboniferous coal seams are mined simultaneously. The upper Jurassic coal seam has been largely mined, leaving a large amount of gob area. Besides, a large amount of harmful water is accumulated. With the exploitation of the 3-5# extra-thick coal seam in the Carboniferous system, the scope of overburden damage is greatly increasing, and the mining fracture field is further developed. Once the mining-induced fractures connect with the overlying gob, it is easy to induce the water discharge disaster. With the mining geological conditions of the 8202 working face in the Tongxin coal mine as references, the disastrous mechanism of water discharge in the abandoned gob above the stope in the mining extra-thick coal seam is researched by numerical simulation with the UDEC numerical software, and the research results are obtained. The water in the overlying gob percolates through the mining-induced fractures in the higher key layer forming a “shower” seepage pattern. The water in the above gob converges in the key fracture channel, flowing into the working face. The seepage in the fractures in the high key stratum experiences the process of increase, decrease, and stabilization, related with the stretching and extrusion deformation between the high key stratum blocks. Compared with other fractures, the flow rates in the No.2 and No.4 fractures in the far field key lay are larger, because the fractures are in the tension state, forming the “saddle-shaped” flow pattern. The influencing distance of mining-induced seepage is about 80 m in front of the working face. The research results provide a guided reference for the prediction and prevention of water discharge disaster in an abandoned gob above the stope in a mining extra-thick coal seam.


2021 ◽  
Author(s):  
Chuang Liu ◽  
Huamin Li

Abstract In the process of longwall top coal caving, the selection of the top coal caving interval along the advancing direction of the working face has an important effect on the top coal recovery. To explore a realistic top coal caving interval of the longwall top coal caving working face, longwall top coal caving panel 8202 in the Tongxin Coal Mine is used as an example, and 30 numerical simulation models are established by using Continuum-based Distinct Element Method (CDEM) simulation software to study the top coal recovery with 4.0 m, 8.0 m, 12.0 m, 16.0 m, 20.0 m and 24.0 m top coal thicknesses and 0.8 m, 1.0 m, 1.2 m, 1.6 m and 2.4 m top coal caving intervals. The results show that with an increase in the top coal caving interval, the single top coal caving amount increases. The top coal recovery is the highest with a 0.8 m top coal caving interval when the thickness of the top coal is less than 4.0 m, and it is the highest with a 1.2 m top coal caving interval when the coal seam thickness is greater than 4.0 m. These results provide a reference for the selection of a realistic top coal caving interval in thick coal seam caving mining.


2021 ◽  
pp. 014459872110635
Author(s):  
Wei Zhao ◽  
Wei Qin

Coal mining results in strata movement and surrounding rock failure. Eventually, manual mining space will be occupied by the destructed coal rock, making it difficult to conduct field tests of the coal seam to explore gas seepage and transport patterns. Therefore, computational fluid dynamics (CFD) numerical computation is an important tool for such studies. From the aspect of gas pre-drainage, for layer-through boreholes in the floor roadway of the 8,406 working face in Yangquan Mine 5 in China, reasonable layout parameters were obtained by CFD optimization. For effectively controlling the scope of boreholes along coal seam 9 in the Kaiyuan Mine, CFD computation was performed. The results revealed that the horizontal spacing between boreholes should be ≤2 m when a tri-quincuncial borehole layout is used. Optimization of the surface well position layout for the fault structure zone in the Xinjing Mine of the Yangquan mining area indicated that the horizontal distance between the surface well and the fault plane should be <150 m. From the aspect of gas drainage with mining-induced pressure relief, CFD computation was performed for pressure-relieved gas transport in the K8205 working face of Yangquan Mine 3. The results showed that forced roof caving should be used before the overhang length of hard roof reaches 25 m in the K8205 working face to avoid gas overrun. From the aspect of gas drainage from the abandoned gob, surface well control scopes at different surface well positions were computed, and an O-ring fissure zone is proposed as a reasonable scope for the surface well layout. CFD computation has been widely applied to coal and gas co-extraction in the Yangquan mining area and has played a significant role in guiding related gas drainage engineering practice.


2018 ◽  
Vol 2018 ◽  
pp. 1-14 ◽  
Author(s):  
Jie Fang ◽  
Lei Tian ◽  
Yanyan Cai ◽  
Zhiguo Cao ◽  
Jinhao Wen ◽  
...  

The water inrush of a working face is the main hidden danger to the safe mining of underwater coal seams. It is known that the development of water-flowing fractured zones in overlying strata is the basic path which causes water inrushes in working faces. In the engineering background of the underwater mining in the Longkou Mining Area, the analysis model and judgment method of crack propagation were created on the basis of the Mohr–Coulomb criterion. Fish language was used to couple the extension model into the FLAC3d software, in order to simulate the mining process of the underwater coal seam, as well as to analyze the initiation evolutionary characteristics and seepage laws of the fractured zones in the overlying strata during the advancing processes of the working face. The results showed that, during the coal seam mining process, the mining fractured zones which had been caused by the compression-shear and tension-shear were mainly concentrated in the overlying strata of the working face. Also, the open-off cut and mining working face were the key sections of the water inrush in the rock mass. The condition of the water disaster was the formation of a water inrush channel. The possible water inrush channels in underwater coal mining are mainly composed of water-flowing fractured zones which are formed during the excavation processes. The numerical simulation results were validated through the practical engineering of field observations on the height of water-flowing fractured zone, which displayed a favorable adaptability.


2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Zhenhua Li ◽  
Yingkun Pang ◽  
Yongsheng Bao ◽  
Zhanyuan Ma

In the process of high-intensity and large-space mining in Shendong mining area, various surface cracks are generated on the surface, resulting in serious damage to the surface buildings and the local ecological environment. To study the influence of overlying rock movement on surface failure of near-field single key strata of near-shallow buried and large mining height working face, the relationship between overburden movement, strata pressure appearance, and surface failure at working face 52307 in Daliuta mining area was analyzed by field measurement and numerical simulation. The results show the following: (1) there is only one thick and hard key stratum in the overburden of large mining height and near-shallow buried working face. Under the condition of presplitting roof blasting, the first weighting step is still as high as 95 m, and the periodic breaking step of roof is 20–30 m. During the weighting, the working resistance of support is still close to the rated resistance. (2) The single key stratum plays an obvious role in controlling overburden movement. After the first weighting of the working face, a stepped subsidence crack appears on the surface within a short time, and the crack lags behind the working face for about 5 m. (3) During each periodic weighting process, the breaking and subsidence of key blocks are accompanied by surface cracks.


2015 ◽  
Vol 743 ◽  
pp. 612-616 ◽  
Author(s):  
J.H. Yu ◽  
De Bing Mao

Based on the feature of large thickness and poor drawing characteristics in extremely thick coal seam top-coal caving method, combined with numerous practical examples analyses, the primarily six factors influence the drawing characteristics were found out which are mining depth, coal seam strength, joint crack development, parting thickness in top-coal, caving ratios, immediate roof filling coefficient. According to 45 typical top-coal caving in extremely thick coal seam samples, the prediction of top-coal caving and drawing characteristics based on artificial neural networks was established and training samples and testing samples was determined. Use SPSS statistical software training the network model. Then select No. 9 coal seam first mining area of Tiaohu mine as the application case. The drawing property was forecast according to the established network model. Application results show that the use of artificial neural networks for top-coal caving and drawing characteristic prediction is effective and feasible.


2011 ◽  
Vol 347-353 ◽  
pp. 183-188 ◽  
Author(s):  
Ping Wei Xing ◽  
Xuan Min Song ◽  
Yu Ping Fu

Based on the high mining height of large cutting height workface in shallow thick coal seam and the few falling waste rock in goaf, the key roof can not be supported effectively, the facture mechanical model of key roof was established. The theoretical calculation formula of key stratum fracture step and working resistance of support were obtained by using fracture mechanics. The results show that the fracture step of key roof relate to not only the mechanical character of key roof and the load of overlaying rock seam, but also the working resistance of support and horizontal pressure in key roof. The reasonable working resistance of support and the step of roof fracture were analyzed in 1-2coalmine 51104 face of a mine in Dongsheng area. The theoretical results are well agreeable with the field measured results.


Sign in / Sign up

Export Citation Format

Share Document