scholarly journals Theory and Application of Gob-Side Entry Retaining in Thick Three-Soft Coal Seam

Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Junchao Shen ◽  
Ying Zhang

With the characteristic of less roadway excavation and high resource recovery, gob-side entry retaining (GER) technology is a safe and efficient green mining technology. Many experts and scholars have done extensive research on its principle and application. However, GERs are rarely used in thick soft coal seams. In this paper, based on the geological conditions of a coal mine in China, we propose a novelty approach of GER in thick three-soft coal seam (it means a single seam with a soft roof and a soft floor). The engineering scheme includes roadway expansion, large section roadway support, cutting roof to relieve pressure, and road-inside backfill body construction. The established mechanical and numerical calculation models effectively guide the engineering practice. Field observations showed that all the processes met the requirements of field production. The research results could provide theoretical guidance for the application of GER under similar geological conditions.

2011 ◽  
Vol 90-93 ◽  
pp. 622-625
Author(s):  
Lu Chen ◽  
Chuan Wei Zang ◽  
Feng Hai Yu ◽  
Xiang Kun Yu

Support invalidity of a roadway have a largely influence on production safety of coal mines, especially the soft coal roadway, which deforms heavily. To solve this problem, it began from the gateway section optimization, based on the actual geological condition of Chang-gouyu Mine. The computational model was established up to optimize tunnel shapes using FLAC3D. The scopes of plastic zone, stress field, displacement field were compared and analysed for different shapes of roadway. The irregular trapezoid section is adopted, then the bolt support parameters were designed and field application was done. By using the irregular trapezoid, the stress distribution around the roadway is improved and the deformation and plastic zone is decreased. Under the geological conditions of the soft coal seam and hard roof strata, the stability of roadway was effectively controlled by using optimized trapeziform cross-section and bolting support.


2012 ◽  
Vol 256-259 ◽  
pp. 1422-1428
Author(s):  
Tie Qi Zheng ◽  
Dong Ming Guo ◽  
Yu Fei Zhang ◽  
Jian Lv

Mechanized mining of Longwall top coal caving mining method was used in 1201 work face of thick soft coal seam in Du Jiacun Mine. The face is back to the wind drift along the seam floor excavation, transport drift along the seam roof boring the two crossheading basic fullcoal roadway, due to the relatively soft coal body, joints fractured, coal strength is low, and the coal-rock inclination, roadway section, the weakness of the surrounding rock rock, resulting in the excavation and support difficulties. This chapter based on numerical computation FLAC3D large-scale numerical analysis software, on the inclination special soft coal seam using a different roadway, support method, numerical simulation analysis of the support parameters, the contrast in different roadway support system support parameters, the deformation of surrounding rock displacement, stress distribution, the distribution of plastic zone, the big dip is extremely soft for Du Village coal mine mining Gateway support programs, and through on-site ground pressure observation of program verification.


2014 ◽  
Vol 1049-1050 ◽  
pp. 335-338 ◽  
Author(s):  
Fa Quan Liu ◽  
Xue Wen Geng ◽  
Yong Che ◽  
Xiang Cui

To get the maximum coal in front of the working face of the 17# coal seam, we installed a longer beam which is 1.2m in length in the leading end of the original working face supports ZF3000/17/28, and know that working face supports’ setting load and working resistance are lower .We changed the original supports with shield supports ZY3800/15/33 that are adaptable in the geological condition and got the favorable affection.


2021 ◽  
Vol 9 ◽  
Author(s):  
Xinzhe Zhang ◽  
Piotr Wiśniewski ◽  
Sławomir Dykas ◽  
Guojie Zhang

High-pressure abrasive water jet flushing (HPAWJF) is an effective method used to improve coal seam permeability. In this study, based on the theories of gas flow and coal deformation, a coupled gas-rock model is established to investigate realistic failure processes by introducing equations for the evolution of mesoscopic element damage along with coal mass deformation. Numerical simulation of the failure and pressure relief processes is carried out under different coal seam permeability and flushing length conditions. Distributions of the seepage and gas pressure fields of the realistic failure process are analyzed. The effects of flushing permeability enhancement in a soft coal seam on the gas drainage from boreholes are revealed by conducting a field experiment. Conclusions can be extracted that the gas pressure of the slotted soft coal seam is reduced and that the gas drainage volume is three times higher than that of a conventional borehole. Field tests demonstrate that the gas drainage effect of the soft coal seam is significantly improved and that tunneling speed is nearly doubled. The results obtained from this study can provide guidance to gas drainage in soft coal seams regarding the theory and practice application of the HPAWJF method.


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Feng Cui ◽  
Tinghui Zhang ◽  
Xiaoqiang Cheng

Rib spalling disaster at the coal mining faces severely restricted the safe and efficient output of coal resources. In order to solve this problem, based on the analysis of the current status of rib spalling in the three-soft coal seam 1508 Working Face of Heyang Coal Mine, a mechanical model of sliding-type rib spalling was established and the main influencing factors that affect rib spalling are given. The mechanism of grouting technology to prevent and control rib spalling has been theoretically analyzed. A similarity simulation experiment is used to analyze the change law of roof stress under the condition of three-soft coal seam mining. The optimal grouting pressure is determined by a numerical simulation experiment. And, silicate-modified polymer grouting reinforcement materials (SMPGMs) are used in field experiments. After twice grouting operations in the 1508 Working Face, the coal wall was changed from the original soft and extremely easy rib spalling to a straight coal wall and the amount of rib spalling has been reduced by 57.45% and 48.43, respectively. And, the mining height has increased by 0.16 m and 0.23 m, respectively. The experimental results show that the rib spalling disaster of the three-soft coal seam has been effectively controlled.


2016 ◽  
Vol 34 (3) ◽  
pp. 473-478
Author(s):  
Hongtu Zhang ◽  
Jianping Wei ◽  
Yungang Wang ◽  
Zhihui Wen ◽  
Banghua Yao

2010 ◽  
Vol 20 (5) ◽  
pp. 712-717 ◽  
Author(s):  
Dongji LEI ◽  
Chengwu LI ◽  
Zimin ZHANG ◽  
Yugui ZHANG

2019 ◽  
Vol 2019 ◽  
pp. 1-7
Author(s):  
Guiqiang Zheng ◽  
Bin Sun ◽  
Dawei Lv ◽  
Zhejun Pan ◽  
Huiqing Lian

Coalbed methane (CBM) reservoir properties and relationship of properties with burial depth were studied based on the data derived from 204 deep CBM production wells in Qinshui Basin, China. Through the study, it is found that permeability and porosity decrease with the increase of burial depth and the decreasing trend shows step-change characteristics at a critical burial depth. They also show divisional characteristics at certain burial depth. Gas content, geostress, and geotemperature increase with the increase of burial depth, and the increasing trend shows step-change characteristics and also have divisional characteristics at certain burial depth. Based on the previous study on the reservoir property changes with burial depth, three series of critical depth using different parameters are obtained through simulating the critical depth using the BP neural network method. It is found that the critical depth is different when using different parameters. Combined the previous study with the normalization of three different parameter types, the critical depth in Qinshui Basin was defined as shallow coal seam is lower than 650 m and transition band is 650–1000 m, while deep coal seam is deeper than 1000 m. In deep coal seams, the geological conditions and recovery becomes poor, so it can be defined as unfavorable zones. Therefore, other development means, for example, CO2 injection, need to be used to accelerate the deep coal methane development.


Energies ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 232 ◽  
Author(s):  
Qunlei Zhang ◽  
Ruifu Yuan ◽  
Shen Wang ◽  
Dongyin Li ◽  
Huamin Li ◽  
...  

A particle element approach based on continuum-discontinuum element method (CDEM) is applied to optimize the automated top-coal drawing techniques in extra-thick coal seams. Numerical models with 100 drawing openings are created according to the field engineering geological conditions of Tongxin coal mine in China. An automated coal drawing control approach in numerical modelling based on time criterion is proposed. The rock mixed rate, top-coal recovery rate and the variance of the drawn top coal amount are counted and set as the statistical indicators to evaluate the top-coal drawing techniques. The traditional top-coal drawing criterion, “rocks appear, close the opening”, leads to low recovery of top coal and waste of coal resources in extra-thick coal seams, significantly weakening the transport stability and efficiency of the scraper conveyer. A three-round unequal time top-coal drawing technique is proposed for automated top-coal drawing. Three drawing openings, corresponding to the three top-coal drawing rounds respectively, are working at the same time; in each round, the top-coal drawing sequence is from the first drawing opening at one end of the working face to last drawing opening at another end; the drawing time of each round is not equal and increases with the round number. The numerical inversion approach of iteration steps can be used for real top-coal drawing time estimation and automated drawing process design to achieve a better top coal drawing effect, while the exact time for each drawing round still needs to be corrected by engineering practice.


Sign in / Sign up

Export Citation Format

Share Document