scholarly journals PER2 Regulates Reactive Oxygen Species Production in the Circadian Susceptibility to Ischemia/Reperfusion Injury in the Heart

2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Yaqian Weng ◽  
Hui Li ◽  
Lin Gao ◽  
Wenjing Guo ◽  
Shiyuan Xu ◽  
...  

The main objective of this study was to investigate the diurnal differences in Period 2 (PER2) expression in myocardial ischemia-reperfusion (I/R) injury. We investigated diurnal variations in oxidative stress and energy metabolism after myocardial I/R in vitro and in vivo. In addition, we also analyzed the effects of H2O2 treatment and serum shock in H9c2 cells transfected with silencing RNA against Per2 (siRNA-Per2) in vitro. We used C57BL/6 male mice to construct a model of I/R injury at zeitgeber time (ZT) 2 and ZT14 by synchronizing the circadian rhythms. Our in vivo analysis demonstrated that there were diurnal differences in the severity of injury caused by myocardial infarctions, with more injury occurring in the daytime. PER2 was significantly reduced in heart tissue in the daytime and was higher at night. Our results also showed that more severe injury of mitochondrial function in daytime produced more reactive oxygen species (ROS) and less ATP, which increased myocardial injury. In vitro, our findings presented a similar trend showing that apoptosis of H9c2 cells was increased when PER2 expression was lower. Meanwhile, downregulation of PER2 disrupted the oxidative balance by increasing ROS and mitochondrial injury. The result was a reduction in ATP and failure to provide sufficient energy protection for cardiomyocytes.

2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Lin Zhao ◽  
Liting Cheng ◽  
Yongquan Wu

Reperfusion therapy is the most important method for treating acute myocardial infarction. However, myocardial ischemia reperfusion injury (MIRI) can offset the benefit of reperfusion therapy and worsen the outcome. In both ischemia and reperfusion, autophagy remains problematic. Activating molecule in Beclin1-regulated autophagy (Ambra1) is an important protein in autophagy regulation, and its function in MIRI remains unclear. Thus, we used H9C2 cells to investigate the function of Ambra1 in MIRI and the underlying mechanisms involved. Hypoxia and reoxygenation of H9C2 cells were used to mimic MIRI in vitro. During hypoxia, autophagy flux was blocked, then recovered in reoxygenation. Ambra1 overexpression increased autophagy in the H9C2 cells, as the LC3B II/I ratio increased, and alleviated cellular necrosis and apoptosis during hypoxia and reoxygenation. This effect was counteracted by an autophagy inhibitor. Knocking down Ambra1 can block autophagy which P62 sediment/supernatant ratio increased while the ratio of LC3B II/I decreased, and worsen outcomes. Ambra1 enhances autophagy in H9C2 cells by improving the stability and activity of the ULK1 complex. Reactive oxygen species (ROS) are an important cause of MIRI. ROS were reduced when Ambra1 was overexpressed and increased when Ambra1 was knocked down, indicating that Ambra1 can protect against hypoxia and reoxygenation injury in H9C2 cells by promoting autophagy and reducing ROS.


2018 ◽  
Vol 49 (6) ◽  
pp. 2320-2332 ◽  
Author(s):  
Guo Zu ◽  
Tingting Zhou ◽  
Ningwei Che ◽  
Xiangwen Zhang

Background/Aims: Ischemia-reperfusion (I/R) adversely affects the intestinal mucosa. The major mechanisms of I/R are the generation of reactive oxygen species (ROS) and apoptosis. Salvianolic acid A (SalA) is suggested to be an effective antioxidative and antiapoptotic agent in numerous pathological injuries. The present study investigated the protective role of SalA in I/R of the intestine. Methods: Adult male Sprague-Dawley rats were subjected to intestinal I/R injury in vivo. In vitro experiments were performed in IEC-6 cells subjected to hypoxia/ reoxygenation (H/R) stimulation to simulate intestinal I/R. TNF-α, IL-1β, and IL-6 levels were measured using enzyme-linked immunosorbent assay. Malondialdehyde and myeloperoxidase and glutathione peroxidase levels were measured using biochemical analysis. Apoptosis was measured by terminal deoxynucleotidyl transferase mediated dUTP nick-end labeling staining or flow cytometry in vivo and in vitro. The level of reactive oxygen species (ROS) was measured by dichlorodihydrofluorescin diacetate (DCFH-DA) staining. Western blotting was performed to determine the expression of heme oxygenase-1 (HO-1), Nrf2 and proteins associated with apoptosis. The mRNA expressions of Nrf2 and HO-1 were detected by quantitative real-time polymerase chain reaction in vivo and in vitro. Results: Malondialdehyde level and myeloperoxidase and glutathione peroxidase, TNF-α, IL-1β, and IL-6 levels group in intestinal tissue decreased significantly in the SalA pretreatment groups compared to the I/R group. SalA markedly abolished intestinal injury compared to the I/R group. SalA significantly attenuated apoptosis and increased Nrf2/HO-1 expression in vivo and in vitro. However, Nrf2 siRNA treatment partially abrogated the above mentioned effects of SalA in H/R-induced ROS and apoptosis in IEC-6 cells. Conclusion: The present study demonstrated that SalA ameliorated oxidation, inhibited the release of pro-inflammatory cytokines and alleviated apoptosis in I/R-induced injury and that these protective effects may partially occur via regulation of the Nrf2/ HO-1 pathways.


2006 ◽  
Vol 290 (6) ◽  
pp. H2247-H2256 ◽  
Author(s):  
Ivan Rubio-Gayosso ◽  
Steven H. Platts ◽  
Brian R. Duling

The glycocalyx (Gcx) is a complex and poorly understood structure covering the luminal surface of endothelial cells. It is known to be a determinant of vascular rheology and permeability and may be a key control site for the vascular injuries caused by ischemia-reperfusion (I/R). We used intravital-microscopy to evaluate the effects of I/R injury on two properties of Gcx in mouse cremasteric microvessels: exclusion of macromolecules (anionic-dextrans) and intracapillary distribution of red blood cells (RBC). In this model, the Gcx is rapidly modified by I/R injury with an increase in 70-kDa anionic-dextran penetration without measurable effect on the penetration of 580-kDa anionic-dextran or on RBC exclusion. The effects of I/R injury appear to be mediated by the rapid production of reactive oxygen species (ROS) because they are ameliorated by the addition of exogenous superoxide dismutase-catalase. Intravenous application of allopurinol or heparin also inhibited the effects of I/R injury, and we interpret efficacy of allopurinol as evidence for a role for xanthine-oxidoreductase (XOR) in the response to I/R injury. Heparin, which is hypothesized to displace XOR from a heparin-binding domain in the Gcx, reduced the effects of I/R. The effects of I/R injury were also partially prevented or fully reversed by the intravascular infusion of exogenous hyaluronan. These data demonstrate: 1) the liability of Gcx during I/R injury; 2) the importance of locally produced ROS in the injury to Gcx; and 3) the potential importance of heparin-binding sites in modulating the ROS production. Our findings further highlight the relations between glycosaminoglycans and the pathophysiology of Gcx in vivo.


2021 ◽  
Vol 12 (2) ◽  
Author(s):  
Zhuochao Liu ◽  
Hongyi Wang ◽  
Chuanzhen Hu ◽  
Chuanlong Wu ◽  
Jun Wang ◽  
...  

AbstractIn this study, we identified the multifaceted effects of atezolizumab, a specific monoclonal antibody against PD-L1, in tumor suppression except for restoring antitumor immunity, and investigated the promising ways to improve its efficacy. Atezolizumab could inhibit the proliferation and induce immune-independent apoptosis of osteosarcoma cells. With further exploration, we found that atezolizumab could impair mitochondria of osteosarcoma cells, resulting in increased release of reactive oxygen species and cytochrome-c, eventually leading to mitochondrial-related apoptosis via activating JNK pathway. Nevertheless, the excessive release of reactive oxygen species also activated the protective autophagy of osteosarcoma cells. Therefore, when we combined atezolizumab with autophagy inhibitors, the cytotoxic effect of atezolizumab on osteosarcoma cells was significantly enhanced in vitro. Further in vivo experiments also confirmed that atezolizumab combined with chloroquine achieved the most significant antitumor effect. Taken together, our study indicates that atezolizumab can induce mitochondrial-related apoptosis and protective autophagy independently of the immune system, and targeting autophagy is a promising combinatorial approach to amplify its cytotoxicity.


2019 ◽  
Vol 20 (18) ◽  
pp. 4556 ◽  
Author(s):  
Hanna Zielinska-Blizniewska ◽  
Przemyslaw Sitarek ◽  
Anna Merecz-Sadowska ◽  
Katarzyna Malinowska ◽  
Karolina Zajdel ◽  
...  

Obesity is a complex disease of great public health significance worldwide: It entails several complications including diabetes mellitus type 2, cardiovascular dysfunction and hypertension, and its prevalence is increasing around the world. The pathogenesis of obesity is closely related to reactive oxygen species. The role of reactive oxygen species as regulatory factors in mitochondrial activity in obese subjects, molecules taking part in inflammation processes linked to excessive size and number of adipocytes, and as agents governing the energy balance in hypothalamus neurons has been examined. Phytotherapy is the traditional form of treating health problems using plant-derived medications. Some plant extracts are known to act as anti-obesity agents and have been screened in in vitro models based on the inhibition of lipid accumulation in 3T3-L1 cells and activity of pancreatic lipase methods and in in vivo high-fat diet-induced obesity rat/mouse models and human models. Plant products may be a good natural alternative for weight management and a source of numerous biologically-active chemicals, including antioxidant polyphenols that can counteract the oxidative stress associated with obesity. This review presents polyphenols as natural complementary therapy, and a good nutritional strategy, for treating obesity without serious side effects.


2019 ◽  
Vol 11 (3) ◽  
pp. 292-297 ◽  
Author(s):  
Jonathan E. Palmer ◽  
Breanna M. Brietske ◽  
Tyler C. Bate ◽  
Erik A. Blackwood ◽  
Manasa Garg ◽  
...  

2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
N. Pfeifer ◽  
D. M. Baston-Büst ◽  
J. Hirchenhain ◽  
U. Friebe-Hoffmann ◽  
D. T. Rein ◽  
...  

Background. The aim of this paper was to determine the influence of differentin vitroculture media on mRNA expression of Hedgehog genes,il-6,and important genes regarding reactive oxygen species in single mouse embryos.Methods. Reverse transcription of single embryos either culturedin vitrofrom day 0.5 until 3.5 (COOK’s Cleavage medium or Vitrolife’s G-1 PLUS medium) orin vivountil day 3.5post coitum. PCR was carried out forβ-actinfollowed by nested-PCR forshh, ihh, il-6, nox, gpx4, gpx1,andprdx2.Results. The number of murine blastocysts cultured in COOK medium which expressedil-6, gpx4, gpx1,andprdx2mRNA differed significantly compared to thein vivogroup. Except fornox, the mRNA profile of the Vitrolife media group embryos varied significantly from thein vivoones regarding the number of blastocysts expressing the mRNA ofshh, ihh, il-6, gpx4, gpx1andprdx2.Conclusions. The present study shows that differentin vitroculture media lead to different mRNA expression profiles during early development. Even the newly developedin vitroculture media are not able to mimic the female reproductive tract. The question of long-term consequences for children due to assisted reproduction techniques needs to be addressed in larger studies.


2020 ◽  
Vol 16 (3) ◽  
pp. e1008379 ◽  
Author(s):  
Artur Santos-Miranda ◽  
Julliane Vasconcelos Joviano-Santos ◽  
Grazielle Alves Ribeiro ◽  
Ana Flávia M. Botelho ◽  
Peter Rocha ◽  
...  

Cancers ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1661 ◽  
Author(s):  
Long Yuan ◽  
Rosalin Mishra ◽  
Hima Patel ◽  
Samar Alanazi ◽  
Xin Wei ◽  
...  

B-Rapidly Accelerated Fibrosarcoma (BRAF) mutations are found in about 50% of melanoma patients. Treatment with Food and Drug Administration (FDA)-approved BRAF and MAP/ERK kinase (MEK) inhibitors has improved progression free and overall survival of patients with BRAF mutant melanoma. However, all responders develop resistance typically within 1 year of treatment with these inhibitors. Evidence indicates that reactive oxygen species (ROS) levels are elevated after BRAF pathway inhibition treatment. We aim to decipher the role of mitochondrial antioxidant proteins relative to ROS levels and BRAF pathway inhibitor resistance. We observed BRAF mutant melanoma cells treated with the combination of a MEK inhibitor (trametinib) and a BRAF inhibitor (dabrafenib), exhibited elevated ROS levels, both in in vitro and in vivo melanoma models. We next generated trametinib- and dabrafenib-resistant (TDR) cells and found increased ROS levels after acquisition of resistance. An immunofluorescence experiment showed an increase of DNA damage in TDR cell lines. Furthermore, we observed that TDR cells increased superoxide dismutase 2 (SOD2), an antioxidant, at both mRNA and protein levels, with the upregulation of the transcription factor Nuclear Factor (NF)-κB. Knockdown of SOD2 significantly reduced the growth of BRAF pathway inhibitor-resistant cells. In addition, the results indicate that TDR cells can be re-sensitized to BRAF pathway inhibitors by the ROS scavenger, N-Acetyl Cysteine (NAC). Overall, these data indicate that BRAF pathway inhibitor-resistant cells can compensate for elevated ROS via increased expression of the antioxidant SOD2.


Sign in / Sign up

Export Citation Format

Share Document