scholarly journals The Influence of Longitudinal Force on the Internal Force Distribution and Deformation Coordination Mechanism for Segment Lining

2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Cao Songyu ◽  
Feng Kun ◽  
Liu Xun ◽  
He Chuan ◽  
Xiao Mingqing

A series of local prototype tests are conducted on the Sutong GIL (Gas-Insulated Line) and Shiziyang Tunnel. These tests investigate the redistribution law of segment deformation and the bending moment during construction. The results reveal that the transfer ability of deformation and the bending moment improve with an increase in the longitudinal force. Stage characteristics are observed for the effect of the longitudinal force on the opening of the circumferential joints. Segments are fully contacted for the circumferential joints when the joint opening is not observed. The frictions between the segments are the key factors for the bending moment and segment deformation control. The opening of the circumferential joint with an increase in the joint opening then becomes the primary control factor. The transfer ability becomes stable when the load continues increasing after mortise and tenon contact. Better transfer ability occurs with a general segment with four pairs of mortises and tenons. This was presented as a smaller value of an increasing rate and the stable magnitude of the joint opening. From the perspective of practical engineering, mortises and tenons can be added to the vault to increase the load and deformation transfer ability of the general segment after the loss of the longitudinal force.

2021 ◽  
Vol 11 (5) ◽  
pp. 2225
Author(s):  
Fu Wang ◽  
Guijun Shi ◽  
Wenbo Zhai ◽  
Bin Li ◽  
Chao Zhang ◽  
...  

The steel assembled support structure of a foundation pit can be assembled easily with high strength and recycling value. Steel’s performance is significantly affected by the surrounding temperature due to its temperature sensitivity. Here, a full-scale experiment was conducted to study the influence of temperature on the internal force and deformation of supporting structures, and a three-dimensional finite element model was established for comparative analysis. The test results showed that under the temperature effect, the deformation of the central retaining pile was composed of rigid rotation and flexural deformation, while the adjacent pile of central retaining pile only experienced flexural deformation. The stress on the retaining pile crown changed little, while more stress accumulated at the bottom. Compared with the crown beam and waist beam 2, the stress on waist beam 1 was significantly affected by the temperature and increased by about 0.70 MPa/°C. Meanwhile, the stress of the rigid panel was greatly affected by the temperature, increasing 78% and 82% when the temperature increased by 15 °C on rigid panel 1 and rigid panel 2, respectively. The comparative simulation results indicated that the bending moment and shear strength of pile 1 were markedly affected by the temperature, but pile 2 and pile 3 were basically stable. Lastly, as the temperature varied, waist beam 2 had the largest change in the deflection, followed by waist beam 1; the crown beam experienced the smallest change in the deflection.


Author(s):  
Виктор Миронович Варшицкий ◽  
Евгений Павлович Студёнов ◽  
Олег Александрович Козырев ◽  
Эльдар Намикович Фигаров

Рассмотрена задача упругопластического деформирования тонкостенной трубы при комбинированном нагружении изгибающим моментом, осевой силой и внутренним давлением. Решение задачи осуществлено по разработанной методике с помощью математического пакета Matcad численным методом, основанным на деформационной теории пластичности и безмоментной теории оболочек. Для упрощения решения предложено сведение двумерной задачи к одномерной задаче о деформировании балки, материал которой имеет различные диаграммы деформирования при сжатии и растяжении в осевом направлении. Проведено сравнение с результатами численного решения двумерной задачи методом конечных элементов в упругопластической постановке. Результаты расчета по инженерной методике совпадают с точным решением с точностью, необходимой для практического применения. Полученные результаты упругопластического решения для изгибающего момента в сечении трубопровода при комбинированном нагружении позволяют уточнить известное критериальное соотношение прочности сечения трубопровода с кольцевым дефектом в сторону снижения перебраковки. Применение разработанной методики позволяет ранжировать участки трубопровода с непроектным изгибом по степени близости к предельному состоянию при комбинированном нагружении изгибающим моментом, продольным усилием и внутренним давлением. The problem of elastic plastic deformation of a thin-walled pipe under co-binned loading by bending moment, axial force and internal pressure is considered. The problem is solved by the developed method using the Matcad mathematical package by a numerical method based on the deformation theory of plasticity and the momentless theory of shells. To simplify the solution of the problem, it is proposed to reduce a twodimensional problem to a one-dimensional problem about beam deformation, the material of which has different deformation diagrams under compression and tension in the axial direction. Comparison with the results of numerical solution of the two-dimensional problem with the finite element method in the elastic plastic formulation is carried out. The obtained results of the elastic-plastic solution for the bending moment in the pipeline section under combined loading make it possible to clarify criterion ratio of the strength of the pipeline section with an annular defect in the direction of reducing the rejection. Application of the developed approach allows to rank pipeline sections with non-design bending in the steppe close to the limit state under combined loading of the pipeline with bending moment, longitudinal force and internal pressure.


BioResources ◽  
2015 ◽  
Vol 10 (4) ◽  
Author(s):  
Ali Kasal ◽  
Carl Albert Eckelman ◽  
Eva Haviarova ◽  
Yusuf Ziya Erdil ◽  
İbrahim Yalcin

2021 ◽  
Vol 11 (23) ◽  
pp. 11223
Author(s):  
Bin Hu ◽  
Jian Cai ◽  
Jiabin Ye

By using the ABAQUS finite element (FE) model, which has been verified by experiments, the deformation and internal force changes of RC columns during the impact process are investigated, and a parametric analysis is conducted under different impact kinetic energies Ek. According to the development path of the bottom bending moment-column top displacement curve under impact, the member is in a slight damage state when the curve rebounds before reaching the peak and in a moderate or severe damage state when the curve exceeds the peak, in which case the specific damage state of the member needs to be determined by examining whether there is a secondary descending stage in the curve. Accordingly, a qualitative method for evaluating the bending failure of RC column members under impact is obtained. In addition, the damage state of RC columns under impact can also be quantitatively evaluated by the ratio of the equivalent static load Feq and the ultimate static load-bearing capacity Fsu.


2013 ◽  
Vol 671-674 ◽  
pp. 974-979
Author(s):  
Jie Dai ◽  
Jin Di ◽  
Feng Jiang Qin ◽  
Min Zhao ◽  
Wen Ru Lu

For steel box girder of cable-stayed bridge, which using incremental launching method, during the launching process, structural system and boundary conditions were changing, structure mechanical behaviors were complex. It was necessary to conduct a comprehensive analysis on internal force and deformation of the whole structure during the launching process. Took a cable-stayed bridge with single tower, double cable planes and steel box girder in China as an example; finite element software MIDAS Civil 2010 was used to establish a model for steel box girder, simulation analysis of the entire incremental launching process was carried out. Variation rules and envelopes of the internal force, stress, deformation and support reaction were obtained. The result showed that: the maximum value of positive bending moment after launching complete was 60% of the maximum value of positive bending moment during the launching process. The maximum value of negative bending moment after launching complete was 78% of the maximum value of negative bending moment during the launching process.


1955 ◽  
Vol 22 (3) ◽  
pp. 311-316
Author(s):  
P. G. Hodge

Abstract The centrifugal forces acting upon a rotating ray will produce longitudinal stresses along the ray. If the ray is not symmetric, these stresses will result not only in a longitudinal force, but also in a bending moment. A technique for finding the stress distribution in this case is developed and illustrated by means of simple examples. The limiting elastic speed and the maximum speed before large-scale plastic deformation commences are computed. An indication is given of how similar methods may be used to analyze a rotating disk with no plane of symmetry perpendicular to the axis.


2019 ◽  
Vol 2019 ◽  
pp. 1-8 ◽  
Author(s):  
Xiaowei Wang ◽  
Yingmin Li ◽  
Weiju Song ◽  
Jun Xu

Based on the stiffness limitations of the midtower in multitower cable-stayed bridges, a new stiffening system (tie-down cables) is proposed in this paper. The sag effects and wind-induced responses can be reduced with the proposed system because tie-down cables are short and aesthetic compared with traditional stiffening cables. The results show that the stiffening effect of tie-down cables is better than that of traditional stiffening cables in controlling the displacement and internal force of the bridge based on a static experiment and finite element analysis. Therefore, the proposed system can greatly improve the overall stiffness of a bridge, and its stiffening effect is better than that of traditional stiffening cables in controlling the displacement and internal force. The results provide a reference for the application of such systems in practical engineering.


2019 ◽  
Vol 968 ◽  
pp. 200-208
Author(s):  
Mykola Soroka

The paper considers the problem of the ultimate load finding for structures made of a material with different limits of tensile strength and compression. The modulus of elasticity under tension and compression is the same. It is assumed that upon reaching the ultimate strength, the material is deformed indefinitely. The calculations use a simplified material deformation diagram — Prandtl diagrams. The limiting state of a solid rectangular section under the action of a longitudinal force and a bending moment is considered. The dependences describing the boundary of the strength of a rectangular cross section are obtained. Formulas allowing the calculation of the values of the limit forces and under the action of which the cross section passes into the plastic state are derived. Examples of the analytical calculation of the maximum load for the frame and two-hinged arch are given. An algorithm is proposed and a program for calculating arbitrary flat rod systems according to the limit state using the finite element method is compiled. The proposed algorithm does not involve the use of iterative processes, which leads to an exact calculation of the maximum load within the accepted assumptions.


2011 ◽  
Vol 71-78 ◽  
pp. 3275-3279
Author(s):  
Xiao Na Li ◽  
Tong Chun Li ◽  
Yuan Ding

This paper takes a sluice reconstruction project as an example. The constraint internal force, the related axis force, bending moment, and shearing force at the corresponding section are solved according to the unit stress and internal force balance. Furthermore, technology of mesh auto-generation in cross-section is utilized to plot the internal force graph of the structure directly, which will provide reference for reinforcement design and make it more convenient.


2020 ◽  
Vol 10 (16) ◽  
pp. 5416 ◽  
Author(s):  
Hao Wang ◽  
Zhiying Lv ◽  
Jianwei Zhang ◽  
Jianwei Yue ◽  
Hongyu Qin ◽  
...  

The Yuanzishan landslide is an unstable slope in Langzhong County, located in northeast Sichuan province, China. The Guangyuan-Nanchong expressway passes through the front edge of the unstable slope, and subgrade excavation has resulted in slope deformation, which threatens the safety of the highway construction. Emergency landslide control requires reduction of the slope disturbance. This study aims to investigate the use of buried-boring piles as a potential method for emergency landslide control. A simplified calculation method was used for the design of the buried-boring piles, according to the limit equilibrium of the soil and the elastic foundation coefficient method. The measured internal force changes of the pile were compared, in order to determine the distribution coefficients of the driving force. A relationship between the driving force of the shared pile ratio and the buried depth ratios was then established. Furthermore, a variety of factors affecting the internal forces of the buried-boring pile and the lateral reaction of the soil were also studied. The results revealed that (1) there was a quadratic relationship between the driving force of the pile-shared ratio and the sliding depth ratios; (2) the maximum bending moment of the pile increased with an increase in the sliding depth ratio of the pile, following a power law relationship; (3) increasing the buried depth of the pile head reduced the influence of the pile diameter on the maximum internal forces; (4) increasing the pile diameter decreased the maximum lateral reaction of the soil. The buried-boring piles can be used in similarly unstable regions for emergency control of deforming slopes.


Sign in / Sign up

Export Citation Format

Share Document