scholarly journals Feasibility Study of an Alcohol-Based Liquid Scintillation Detector and Its Application

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Byoung Chan Kim ◽  
Ji Young Choi ◽  
Kyung Kwang Joo ◽  
Seon Yeong Park ◽  
Ye Sung Song ◽  
...  

This paper proposes a new base material, a mixture of alcohol and water, for liquid scintillators. A possibility of using alcohol as a new detection solution in a particle detector is described. A liquid scintillator is widely used in various fields because of its high light yield. In addition, it is very important to develop a stable liquid scintillator for particle detectors or other medical applications. To date, there have been no previous R&D studies elsewhere for the use of alcohol in particle detectors, and no market products are available of this type. Thus, there is a room for improvement. This paper describes the brief synthesizing process of the alcohol-based liquid scintillator by varying the mixing ratio of each component that makes up the liquid scintillator. The several feasible physical and optical properties of an alcohol-based liquid scintillator were investigated and presented. Finally, as one of its applications, a range (beam-path length) measurement using an electron beam in medical physics is introduced after irradiating an alcohol-based liquid scintillator with electron beam energies of 6~12 MeV. The measurement results were compared with a Monte Carlo simulation, Novalis Tx, a phantom, and a CT image. In the near future, the new alcohol-based liquid scintillator could be used for particle detector or medical imaging applications.


Author(s):  
Tamás Tóth ◽  
Jonas Hensel ◽  
Sven Thiemer ◽  
Philipp Sieber ◽  
Klaus Dilger

AbstractThe so-called hairpin winding technology, which is specially tailored to electrical traction components, deploys rectangular plug-in copper wires in the stator. The fusion welding of the adjacent wire ends is associated with challenges due to the high thermal conductivity as well as the porosity formation of the copper. During this study, the electron beam (EB) welding of electrolytic tough pitch (ETP) and oxygen-free electronic grade (OFE) copper connectors was investigated. Subsequently, the specimens underwent X-ray computed tomography (CT) and metallographic examinations to characterize the joints. It was discovered that the residual oxygen content of the base material is responsible for the pore formation. With only a very low level of oxygen content in the copper, a porosity- and spatter-free welding can be reproducibly realized using the robust EB welding technology, especially for copper materials. By optimizing the parameters accordingly, joints exhibiting a low level of porosity were achieved even in the case of the alloy containing a high amount of residual oxygen. Beyond this, detailed analyses in terms of pore distribution were carried out and a good correlation between technological parameters and welding results was determined.



2013 ◽  
Vol 581 ◽  
pp. 801-804 ◽  
Author(s):  
Qian Wang ◽  
Bin Yang ◽  
Yuepin Zhang ◽  
Haiping Xia ◽  
Tianchi Zhao ◽  
...  


2021 ◽  
Vol 1027 ◽  
pp. 149-154
Author(s):  
Sen Dong Gu ◽  
Ji Peng Zhao ◽  
Rui Jie Ouyang ◽  
Yong Hong Zhang

In the present study, TA1 titanium alloy sheets with a thickness of 0.8mm were welded by electron beam welding. Microstructure of the welded region was investigated using optical microscope and electron backscattered diffraction. Then, the tensile test was conducted to analyse the tensile behavior of the welded sheets as well as the fractography of the fracture surfaces. It is shown that the mean grain size in the heat-affected zone is smaller than that in the fusion zone and base material. The strength of the base metal is lower than that of the fusion zone and heat-affected zone. The average values of the yield strength, tensile strength and elongation of the tensile specimens are 224MPa, 335MPa and 35%, respectively. In addition, the tensile specimens of the welded sheets suffer both ductile and brittle deformation during the tensile tests.



2020 ◽  
Vol 80 (9) ◽  
Author(s):  
B. J. Park ◽  
J. J. Choi ◽  
J. S. Choe ◽  
O. Gileva ◽  
C. Ha ◽  
...  

AbstractThe annual modulation signal observed by the DAMA experiment is a long-standing question in the community of dark matter direct detection. This necessitates an independent verification of its existence using the same detection technique. The COSINE-100 experiment has been operating with 106 kg of low-background NaI(Tl) detectors providing interesting checks on the DAMA signal. However, due to higher backgrounds in the NaI(Tl) crystals used in COSINE-100 relative to those used for DAMA, it was difficult to reach final conclusions. Since the start of COSINE-100 data taking in 2016, we also have initiated a program to develop ultra-pure NaI(Tl) crystals for COSINE-200, the next phase of the experiment. The program includes efforts of raw powder purification, ultra-pure NaI(Tl) crystal growth, and detector assembly techniques. After extensive research and development of NaI(Tl) crystal growth, we have successfully grown a few small-size (0.61–0.78 kg) thallium-doped crystals with high radio-purity. A high light yield has been achieved by improvements of our detector assembly technique. Here we report the ultra-pure NaI(Tl) detector developments at the Institute for Basic Science, Korea. The technique developed here will be applied to the production of NaI(Tl) detectors for the COSINE-200 experiment.



2020 ◽  
Vol 6 (12) ◽  
pp. 134
Author(s):  
Tobias Neuwirth ◽  
Bernhard Walfort ◽  
Simon Sebold ◽  
Michael Schulz

We performed a study of the initial and long term light yield of different scintillation screen mixtures for neutron imaging during constant neutron irradiation. We evaluated the light yield during different neutron flux levels as well as at different temperatures. As high frame rate imaging is a topic of interest in the neutron imaging community, the decay characteristics of scintillation screens are of interest as well. Hence, we also present and discuss the decay behavior of the different scintillation screen mixtures on a time scale of seconds. We have found that the decay time of ZnS:Cu/6LiF excited with a high neutron flux is potentially much longer than typically stated. While most of the tested scintillation screens do not provide a significant improvement over currently used scintillation screen materials, Zn(Cd)S:Ag/6LiF seems to be a good candidate for high frame rate imaging due to its high light yield, long-term stability as well as fast decay compared to the other evaluated scintillation screens.



1982 ◽  
Vol 16 ◽  
Author(s):  
P. A. Glasow ◽  
B. O. Kolbesen

As a base material for semiconductor devices, silicon is more widely used than any other semiconductor. The physical properties, in particular the bandgap which is significantly larger than that of germanium, makes the material extremely important for electronic devices. The world's total annual production of silicon is at present some 2000 t [1]. Compared with this, the 10 kg/year of silicon that is used for detectors is rather modest. However, since work on semiconductor radiation detectors started 25 years ago, silicon in addition to germanium forms the centre of interest as the basis for production of nuclear radiation spectrometers, mainly as high energy particle detectors, but also as X-ray detectors.



Crystals ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 88 ◽  
Author(s):  
Francesco Maddalena ◽  
Liliana Tjahjana ◽  
Aozhen Xie ◽  
Arramel ◽  
Shuwen Zeng ◽  
...  

Trends in scintillators that are used in many applications, such as medical imaging, security, oil-logging, high energy physics and non-destructive inspections are reviewed. First, we address traditional inorganic and organic scintillators with respect of limitation in the scintillation light yields and lifetimes. The combination of high–light yield and fast response can be found in Ce 3 + , Pr 3 + and Nd 3 + lanthanide-doped scintillators while the maximum light yield conversion of 100,000 photons/MeV can be found in Eu 3 + doped SrI 2 . However, the fabrication of those lanthanide-doped scintillators is inefficient and expensive as it requires high-temperature furnaces. A self-grown single crystal using solution processes is already introduced in perovskite photovoltaic technology and it can be the key for low-cost scintillators. A novel class of materials in scintillation includes lead halide perovskites. These materials were explored decades ago due to the large X-ray absorption cross section. However, lately lead halide perovskites have become a focus of interest due to recently reported very high photoluminescence quantum yield and light yield conversion at low temperatures. In principle, 150,000–300,000 photons/MeV light yields can be proportional to the small energy bandgap of these materials, which is below 2 eV. Finally, we discuss the extraction efficiency improvements through the fabrication of the nanostructure in scintillators, which can be implemented in perovskite materials. The recent technology involving quantum dots and nanocrystals may also improve light conversion in perovskite scintillators.



2013 ◽  
Vol 102 (21) ◽  
pp. 211902
Author(s):  
Lindsey J. Bignell ◽  
Eskender Mume ◽  
Timothy W. Jackson ◽  
George P. Lee


Scanning ◽  
2017 ◽  
Vol 2017 ◽  
pp. 1-8 ◽  
Author(s):  
Daming Shen ◽  
Donglei Chen ◽  
Zhan Yang ◽  
Huicong Liu ◽  
Tao Chen ◽  
...  

This paper reported a method of multiwalled carbon nanotubes (MWCNTs) fusion inside a scanning electron microscope (SEM). A CNT was picked up by nanorobotics manipulator system which was constructed in SEM with 21 DOFs and 1 nm resolution. The CNT was picked up and placed on two manipulators. The tensile force was 140 nN when the CNT was pulled into two parts. Then, two parts of the CNT were connected to each other by two manipulators. The adhered force between two parts was measured to be about 20 nN. When the two parts of CNT were connected again, the contact area was fused by focused electron beam irradiation for 3 minutes. The tensile force of the junction was measured to be about 100 nN. However, after fusion, the tensile force was five times larger than the tensile force connected only by van der Waals force. This force was 70 percent of the tensile force before pulling out of CNTs. The results revealed that the electron beam irradiation was a promising method for CNT fusion. We hope this technology will be applied to nanoelectronics in the near future.



Sign in / Sign up

Export Citation Format

Share Document