scholarly journals Fixed-Time Synchronization for Different Dimensional Complex Network Systems with Unknown Parameters via Adaptive Control

Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Yude Ji ◽  
Yunli Gong ◽  
Shan Su ◽  
Xiaoxue Bai

This article is related to the issue of fixed-time synchronization of different dimensional complex network systems with unknown parameters. Two suitable adaptive controllers and dynamic parameter estimations are proposed such that the complex network driving and response systems can be synchronized in the settling time. Based on fixed-time control theory and Lyapunov functional method, novel sufficient conditions are provided to guarantee the synchronization within the fixed times, and the settling times are explicitly evaluated, which are independent of the initial synchronization errors. Finally, a numerical example is given to illustrate the effectiveness of the proposed control algorithms.

2017 ◽  
Vol 31 (02) ◽  
pp. 1750008 ◽  
Author(s):  
Hui Zhao ◽  
Lixiang Li ◽  
Haipeng Peng ◽  
Jinghua Xiao ◽  
Yixian Yang ◽  
...  

In the paper, the fixed-time and finite-time synchronizations of multi-links complex network are investigated. Compared with finite-time synchronization, the settling time of fixed-time synchronization is independent of initial conditions. For uncertain multi-links complex networks, this paper further analyzes synchronization mechanism and unknown parameters based on the drive-response concept and finite-time stability theory. Novel synchronization control criteria and the result of parameters identification are, respectively, obtained in a finite time by utilizing Lyapunov function and linear matrix inequality (LMI). Besides, we give other two versions of finite-time synchronization and parameters identification for uncertain multi-links complex network with impulsive control input. Finally, numerical examples are given to illustrate the effectiveness of our theoretical results.


2019 ◽  
Vol 16 (6) ◽  
pp. 172988141989131
Author(s):  
Peng Zhang ◽  
Yongzheng Cong ◽  
Di Wu ◽  
Guorong Zhang ◽  
Qi Tan

Fixed-time synchronization problem for a class of leader–follower multi-agent systems with second-order nonlinearity is studied in this article. A new fixed-time synchronization control algorithm is developed by effectively combining homogeneous system theory, Lyapunov stability theory, and fixed-time/finite-time control technology. The leader–follower multi-agent system is considered to achieve fixed-time synchronization control. Finally, numerical simulations including coordination control multiple pendulum robot systems and electric power networks are carried out to verify the control performance of the control strategy.


2011 ◽  
Vol 25 (06) ◽  
pp. 757-780 ◽  
Author(s):  
JINLING LIANG ◽  
ZIDONG WANG ◽  
XIAOHUI LIU

In this paper, the robust synchronization problem is investigated for a new class of continuous-time complex networks that involve parameter uncertainties, time-varying delays, constant and delayed couplings, as well as multiple stochastic disturbances. The norm-bounded uncertainties exist in all the network parameters after decoupling, and the stochastic disturbances are assumed to be Brownian motions that act on the constant coupling term, the delayed coupling term as well as the overall network dynamics. Such multiple stochastic disturbances could reflect more realistic dynamical behaviors of the coupled complex network presented within a noisy environment. By using a combination of the Lyapunov functional method, the robust analysis tool, the stochastic analysis techniques and the properties of Kronecker product, we derive several delay-dependent sufficient conditions that ensure the coupled complex network to be globally robustly synchronized in the mean square for all admissible parameter uncertainties. The criteria obtained in this paper are in the form of linear matrix inequalities whose solution can be easily calculated by using the standard numerical software. The main results are shown to be general enough to cover many existing ones reported in the literature. Simulation examples are presented to demonstrate the feasibility and applicability of the proposed results.


Author(s):  
Mohammad Pourmahmood Aghababa ◽  
Hasan Pourmahmood Aghababa

Due to its useful applications in real world processes, synchronization of chaotic systems has attracted the attention of many researchers of mathematics, physics and engineering sciences. In practical situations, many chaotic systems are inevitably disturbed by model uncertainties and external disturbances. Furthermore, in practice, it is hard to determine the precise values of the chaotic systems’ parameters in advance. Besides, from a practical point of view, it is more desirable to achieve synchronization in a given finite time. In this paper, we investigate the problem of finite-time chaos synchronization between two different chaotic systems in the presence of model uncertainties, external disturbances and unknown parameters. Both autonomous and non-autonomous chaotic systems are taken into account. To tackle the unknown parameters, appropriate adaptation laws are proposed. Using the adaptation laws and finite-time control technique, an adaptive robust finite-time controller is designed to guarantee that the state trajectories slave system converge to the state trajectories of the master system in a given finite time. Some numerical simulations are presented to verify the robustness and usefulness of the proposed finite-time control technique.


2012 ◽  
Vol 2012 ◽  
pp. 1-12 ◽  
Author(s):  
Weisong Zhou ◽  
Zhichun Yang

A class of dynamical neural network models with time-varying delays is considered. By employing the Lyapunov-Krasovskii functional method and linear matrix inequalities (LMIs) technique, some new sufficient conditions ensuring the input-to-state stability (ISS) property of the nonlinear network systems are obtained. Finally, numerical examples are provided to illustrate the efficiency of the derived results.


2021 ◽  
Vol 2021 ◽  
pp. 1-21
Author(s):  
Lina Yu ◽  
Jingchao Zhang ◽  
Yunfei Ma ◽  
Xinhua Tan ◽  
Chunwei Wang

This paper is concerned with the global finite-time and fixed-time synchronization for a class of discontinuous complex dynamical networks with semi-Markovian switching and mixed time-varying delays. The novel state-feedback controllers, which include integral terms and discontinuous facts, are designed to realize the global synchronization between the drive system and response system. By applying the Lyapunov functional method and matrix inequality analysis technique, the global finite-time and fixed-time synchronization conditions are addressed in terms of linear matrix inequalities (LMIs). Finally, two numerical examples are provided to illustrate the feasibility of the proposed control scheme and the validity of theoretical results.


2021 ◽  
Vol 26 (4) ◽  
pp. 597-609
Author(s):  
Shuai Liu ◽  
Lingli Zhao ◽  
Wanli Zhang ◽  
Xinsong Yang ◽  
Fuad E. Alsaadi

In this paper, fast fixed-time (FDT) synchronization of T–S fuzzy (TSF) complex networks (CNs) is considered. The given control schemes can make the CNs synchronize with the given isolated system more fleetly than the most of existing results. By constructing comparison system and applying new analytical techniques, sufficient conditions are established to derive fast FDT synchronization speedily. In order to give some comparisons, FDT synchronization of the considered CNs is also presented by designing FDT fuzzy controller. Numerical examples are given to illustrate our new results.


Sign in / Sign up

Export Citation Format

Share Document