scholarly journals Approach for Collision Minimization and Enhancement of Power Allocation in WSNs

2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Debabrata Singh ◽  
Jyotishree Bhanipati ◽  
Anil Kumar Biswal ◽  
Debabrata Samanta ◽  
Shubham Joshi ◽  
...  

Wireless sensor networks (WSNs) have attracted much more attention in recent years. Hence, nowadays, WSN is considered one of the most popular technologies in the networking field. The reason behind its increasing rate is only for its adaptability as it works through batteries which are energy efficient, and for these characteristics, it has covered a wide market worldwide. Transmission collision is one of the key reasons for the decrease in performance in WSNs which results in excessive delay and packet loss. The collision range should be minimized in order to mitigate the risk of these packet collisions. The WSNs that contribute to minimize the collision area and the statistics show that the collision area which exceeds equivalents transmission power has been significantly reduced by this technique. This proposed paper optimally reduced the power consumption and data loss through proper routing of packets and the method of congestion detection. WSNs typically require high data reliability to preserve identification and responsiveness capacity while also improving data reliability, transmission, and redundancy. Retransmission is determined by the probability of packet arrival as well as the average energy consumption.

Sensors ◽  
2020 ◽  
Vol 20 (10) ◽  
pp. 2890 ◽  
Author(s):  
Fredrik Kvist ◽  
Andreas Ramstad Urke ◽  
Knut Øvsthus

Recently, the industrial wireless sensor network (WSN) has gained attention as a complement to wired networks due to its flexibility and lower installation cost. We present a novel Reverse Packet Elimination (RPE) algorithm implementation at the IPv6 over the TSCH mode of IEEE 802.15.4e (6TiSCH) stack that increases reliability without significantly increasing energy consumption. RPE increases the reliability while conserving energy by transmitting a cancellation packet from the sink towards the sender to reduce unnecessary packets. The evaluation utilized mainly the 6TiSCH Simulator, with additional analytical assessments. We present several evaluation scenarios and compare WSN with and without RPE. In a WSN where each link had a packet reception rate of 70%, RPE increased the reliability with 11.8%. Furthermore, the average latency decreased with 39.1%. The average energy consumption increased with 19.8% when utilizing RPE. However, the network lifetime, i.e., the time before the first node experiences battery depletion increases slightly, which is a significant improvement compared to alternative replication mechanisms.


2021 ◽  
Author(s):  
Negin Babaei ◽  
Alireza Hedayati

Abstract Internet of things is one of the most important technologies in the last century which covers various domains such as wireless sensor networks. Wireless sensor networks consist of a large number of sensor nodes that are scattered in an environment and collect information from the surrounding environment and send it to a central station. One of the most important problems in these networks is saving energy consumption of nodes and consequently increasing lifetime of networks. Work has been done in various fields to achieve this goal, one of which is clustering and the use of sleep timing mechanisms in wireless sensor networks. Therefore, in this article, we have examined the existing protocols in this field, especially LEACH-based clustering protocols. The proposed method tries to optimize the energy consumption of nodes by using genetic-based clustering as well as a sleep scheduling mechanism based on the colonial competition algorithm. The results of this simulation show that our proposed method has improved network life (by 18%) and average energy consumption (by 11%) and reduced latency in these networks (by 17%).


2021 ◽  
Vol 10 (5) ◽  
pp. 2643-2651
Author(s):  
Noor Alhuda F. Abbas ◽  
Jaber H. Majeed ◽  
Waleed Khalid Al-Azzawi ◽  
Adnan Hussein Ali

There are certain challenges faced with wireless sensor networks (WSNs) performances, consumption can be seen amongst all these challenges as a serious area of research. Data from sensor nodes are transmitted by most WSN energy either among many nodes or to the base station (BS), and due this connection, several routing protocols were developed for supporting in data transmission in the WSNs. Extending network lifetime in an operational environment is the major objective of the wireless sensor network. Charging or exchanging sensor node batteries is almost impossible. Energy balancing and energy efficiency are significant research scopes as per designing of routing protocols aimed at self-organized WSNs. A heterogeneous WSN is one where every node has different amount of energy linked to it before it is deployed in a network. Therefore, different energy efficient routing protocols have been proposed which enables lesser consumption of energy, longer stability period which leads to the network lifetime increasing. In this study, the average energy of a WSN is computed after every logical round of operation for our protocol-HPEEA and compare it with two well-known heterogeneous protocols namely-SEP and CCS. At the end of the considered number of logical operations, MATLAB with simulation results confirm that HPEEA protocol have a reduction in the energy consumption compared to other protocols.


2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
Dae-Young Kim ◽  
Zilong Jin ◽  
Jungwook Choi ◽  
Ben Lee ◽  
Jinsung Cho

In a wireless sensor network, sensor nodes are deployed in an ad hoc fashion and they deliver data packets using multihop transmission. However, transmission failures occur frequently in the multihop transmission over wireless media. Thus, a loss recovery mechanism is required to provide end-to-end reliability. In addition, because the sensor nodes are very small devices and have insufficient resources, energy-efficient data transmission is crucial for prolonging the lifetime of a wireless sensor network. This paper proposes a transmission power control mechanism for reliable data transmission, which satisfies communication reliability through recovery of lost packets. The proposed method calculates packet reception rate (PRR) of each hop to maintain end-to-end packet delivery rate (PDR), which is determined based on the desired communication reliability. Then, the transmission power is adjusted based on the PRR to reduce energy consumption. The proposed method was evaluated through extensive simulations, and the results show that it leads to more energy-efficient data transmission compared to existing methods.


Author(s):  
Baranidharan V. ◽  
Sivaradje G. ◽  
Kiruthiga Varadharajan ◽  
Vignesh S.

The most adverse characteristics of underwater wireless sensor network (UWSN) communications are high propagation delay, high error rate, very low bandwidth, and limited available energy. The energy resources replacement is also more expensive. The proposed clustering-based geographic- opportunistic routing with adjustment of depth-based topology control for communication recovery of void regions (C- GEDAR). The cluster-based GEDAR routes the packet to the surface of sonobuoys with the help of clusters. The void sensor node recovery algorithm is used to recover the void nodes to calculate their new depth. The proposed routing protocol is to be simulated and its performances are evaluated by using an Aquasim simulator. The simulated result shows that C-GEDAR performs better average energy consumption, good packet delivery ratio (PDR) and less end-to-end delay.


2021 ◽  
Vol 2021 ◽  
pp. 1-20
Author(s):  
Amir Chaaf ◽  
Mohammed Saleh Ali Muthanna ◽  
Ammar Muthanna ◽  
Soha Alhelaly ◽  
Ibrahim A. Elgendy ◽  
...  

Underwater wireless sensor networks (UWSNs) enable various oceanic applications which require effective packet transmission. In this case, sparse node distribution, imbalance in terms of overall energy consumption between the different sensor nodes, dynamic network topology, and inappropriate selection of relay nodes cause void holes. Addressing this problem, we present a relay-based void hole prevention and repair (ReVOHPR) protocol by multiple autonomous underwater vehicles (AUVs) for UWSN. ReVOHPR is a global solution that implements different phases of operations that act mutually in order to efficiently reduce and identify void holes and trap relay nodes to avoid it. ReVOHPR adopts the following operations as ocean depth (levels)-based equal cluster formation, dynamic sleep scheduling, virtual graph-based routing, and relay-assisted void hole repair. For energy-efficient cluster forming, entropy-based eligibility ranking (E2R) is presented, which elects stable cluster heads (CHs). Then, dynamic sleep scheduling is implemented by the dynamic kernel Kalman filter (DK2F) algorithm in which sleep and active modes are based on the node’s current status. Intercluster routing is performed by maximum matching nodes that are selected by dual criteria, and also the data are transmitted to AUV. Finally, void holes are detected and repaired by the bicriteria mayfly optimization (BiCMO) algorithm. The BiCMO focuses on reducing the number of holes and data packet loss and maximizes the quality of service (QoS) and energy efficiency of the network. This protocol is timely dealing with node failures in packet transmission via multihop routing. Simulation is implemented by the NS3 (AquaSim module) simulator that evaluates the performance in the network according to the following metrics: average energy consumption, delay, packet delivery rate, and throughput. The simulation results of the proposed REVOHPR protocol comparing to the previous protocols allowed to conclude that the REVOHPR has considerable advantages. Due to the development of a new protocol with a set of phases for data transmission, energy consumption minimization, and void hole avoidance and mitigation in UWSN, the number of active nodes rate increases with the improvement in overall QoS.


Author(s):  
Ghazaleh Kia ◽  
Alireza Hassanzadeh

Background & Objective: In this paper, a new energy efficient LEACH-based protocol for wireless sensor network is presented. One of the main issues in Wireless Sensor Networks (WSNs) is the battery consumption. In fact, changing batteries is a time consuming task and expensive. It is even impossible in many remote WSNs. Methods: The main goal of the presented protocol is to decrease the energy consumption of each node and increase the network lifetime. Lower power consumption results in longer battery lifetime. This protocol takes the advantage of sub-threshold technique and bee colony algorithm in order to optimize the energy consumption of a WSN. Simulation results show that the energy consumption of the wireless sensor network reduces by 25 percent using STBCP in comparison with recent LEACHbased protocols. It has been shown that the average energy of the network remains balanced and the distribution of residual energy in each round is equitable. Conclusion: In addition, the lifetime of a network using STBCP protocol has been increased by 23 percent regarding recently presented routing protocols.


IEEE Access ◽  
2014 ◽  
Vol 2 ◽  
pp. 1281-1306 ◽  
Author(s):  
A. B. M. Alim Al Islam ◽  
Mohammad Sajjad Hossain ◽  
Vijay Raghunathan ◽  
Yu Charlie Hu

Sign in / Sign up

Export Citation Format

Share Document