scholarly journals Research and Application of Hydraulic Punching Pressure Relief Antireflection Mechanism in Deep “Three-Soft” Outburst Coal Seam

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Beifang Gu ◽  
Yanling Wu

To solve the problems of gas predrainage in deep seams with “three softs” and low-air permeability, hydraulic punching pressure relief antireflection technology is proposed on the basis of the research background of gas predrainage technology in Lugou Mine to alleviate technical problems, such as low gas drainage efficiency, in this mine. Through the analysis of the mechanism of hydraulic punching and coal breaking, combined with FLAC3D software, a hydraulic punching pressure relief antireflection model is established. Then, the fracture radii of coal rock are simulated and calculated. The results show that, under hydraulic punching with a water pressure of 10 MPa and coal outputs of 3 m3, 6 m3, 9 m3, and 12 m3, the fracture radii of coal and rock are 3.4 m, 4.8 m, 5.5 m, and 5.9 m, respectively. Using the software to fit the relationship between coal output V and hydraulic punching fracture radius R under the same water pressure, R = 2.32479 V0.3839 is obtained. The field test is carried out in the bottom drainage roadway of 32141 in Lugou Mine. The application effect is as follows: the gas concentration of hydraulic punching with a coal output of 3 m3 is twice that of ordinary drilling, and the coal output of hydraulic punching with a coal output of 6 m3 is four times that of ordinary drilling. The extraction concentration is four times that of ordinary drilling, and the extraction concentration of hydraulic punching with a coal output of 9 m3 is 6.4 times that of ordinary drilling. Combining the results of the numerical simulation and taking into account the actual construction situation on site, the coal output of water jetting from the borehole is 9 m3, and the fracture radius is 5.5 m. This outcome means that the effective half radius is 5.5 m, and the borehole spacing is 7.7 m. These values are the construction parameters for large-scale applications. This proposal provides effective technology and equipment for gas drainage in the deep three-soft coal seam. Consequently, it has promotion and reference significance for gas drainage in coal seam of the same geological type.

2021 ◽  
Vol 9 ◽  
Author(s):  
Xinzhe Zhang ◽  
Piotr Wiśniewski ◽  
Sławomir Dykas ◽  
Guojie Zhang

High-pressure abrasive water jet flushing (HPAWJF) is an effective method used to improve coal seam permeability. In this study, based on the theories of gas flow and coal deformation, a coupled gas-rock model is established to investigate realistic failure processes by introducing equations for the evolution of mesoscopic element damage along with coal mass deformation. Numerical simulation of the failure and pressure relief processes is carried out under different coal seam permeability and flushing length conditions. Distributions of the seepage and gas pressure fields of the realistic failure process are analyzed. The effects of flushing permeability enhancement in a soft coal seam on the gas drainage from boreholes are revealed by conducting a field experiment. Conclusions can be extracted that the gas pressure of the slotted soft coal seam is reduced and that the gas drainage volume is three times higher than that of a conventional borehole. Field tests demonstrate that the gas drainage effect of the soft coal seam is significantly improved and that tunneling speed is nearly doubled. The results obtained from this study can provide guidance to gas drainage in soft coal seams regarding the theory and practice application of the HPAWJF method.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Fan Zhang ◽  
Yang Tang

Multistaged fracturing in the roof of outburst coal seam is an efficient and creative technology for coalbed methane (CBM) drainage, which can effectively improve the permeability of coal seam. To reveal its mechanism of permeability enhancement, the effect of coal-rock interface on multistaged fracturing in the roof of outburst coal seam was simulated and discussed in this paper. Firstly, the lithological difference between outburst coal seam and roof was compared, and the concept and significance of multistaged fracturing in the roof of outburst coal seam were explained. Then, the mechanical conditions of multiple fractures in the roof traversing coal-rock interface were analyzed. The effects of mechanical parameters on multiple fractures were numerically simulated. The results indicated that fracturing borehole in adjacent rocks of outburst coal seam is much easier to drill and maintain gas drainage. Considering gas drainage efficiency and avoiding being blocked by coal fines, multistaged fracturing borehole is generally drilled in the stable rock stratum of roof. Whether the multiple fractures in the roof can traverse coal-rock interface is related to mechanical parameters of coal and rock, friction factor of coal-rock interface, angle between horizontal profile and coal-rock interface, cementing strength of coal-rock interface, minimum horizontal stress, and other factors. Higher fracturing fluid pressure contributes to propagating from the reservoir with low elastic modulus to the one with high elastic modulus for hydraulic fracture. Hydraulic fracture is more likely to propagate in the rock stratum with high brittleness index. The research results can improve multistaged fracturing theory and provide technological support for field test.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Qingling Meng ◽  
Yanling Wu ◽  
Minbo Zhang ◽  
Zichao Wang ◽  
Kejiang Lei

The stability of deep “three-soft” coal seam roof has always been a key issue in coal mining. There are a lot of factors affecting the stability of deep three-soft coal seam outburst roof. However, there is currently no definite method able to draw an accurate assessment conclusion on roof stability. In order to accurately determine the main influencing factors of the stability of deep three-soft coal seam outburst roof and reduce the loss of coal production, this paper performed three-soft coal seam risk identification on Lugou Mine based on the introduction of the fuzzy analytic hierarchy process theory. 23 main risk factors were identified. Then, it established a hierarchical structure model of coal seam roof stability in accordance with experts’ opinions. The analytic hierarchy process was used to calculate the weights of indicators at all levels. Next, the paper used the fuzzy comprehensive evaluation method and expert scoring to evaluate various risk factors in the indicator system, as well as the overall safety level. The results showed that the deep three-soft coal seam stability of Lugou Mine ranks the third hazard level. The main risk and harmful factors include safety awareness, safety monitoring system, roof weakness, ventilation system, fire-fighting system, and rock bolt quality. In response to the evaluation results, this paper formulated corresponding control measure in terms of ventilation risk, safety monitoring risks, construction personnel risks, and fire protection risk to reduce losses in the mining process, providing a new evaluation method for the stability assessment of deep outburst coal seam roof.


2012 ◽  
Vol 204-208 ◽  
pp. 3469-3475
Author(s):  
Guo Liang Lu ◽  
Chen Wang ◽  
Yao Dong Jiang ◽  
Hong Wei Wang

In order to improve the gas drainage effect of "three soft" coal seam with low-permeability and eliminate the gas overrun in the upper corner and return air during the production process, this paper did an exploration on the comprehensive gas management on the fully mechanized caving face of gassy mines in Xuangang mine area and its application achieved a good result.


2014 ◽  
Vol 42 ◽  
pp. 274-283 ◽  
Author(s):  
Chun Liu ◽  
Fubao Zhou ◽  
Kangkang Yang ◽  
Xiang Xiao ◽  
Yingke Liu

2014 ◽  
Vol 1030-1032 ◽  
pp. 1255-1259 ◽  
Author(s):  
Xue Xi Chen ◽  
Yan Ke Zhang ◽  
Yong Xu ◽  
Rui Qing Bi

According to the low intensity, good plasticity in soft coal seam, the effect of direct fracturing to increase permeability was not ideal, the new technology of hydraulic fracture soft coal rock was proposed, which increased coal seam permeability. Its technical principles and characteristics were researched. Water injection pressure was analyzed, including injection time, parameters of the technology and so on. Field application experiment and effect of inspection were conducted. The results showed that the concentration of gas extraction increased 4.3 times, and the gas extraction flow increased 6.2times. The technology has a good effect of fracturing and advantages in enlarging the released area and decreasing diffusion seepage resistance of coal seam. Most important, the technology has broad application prospects in soft coal seam.


2013 ◽  
Vol 868 ◽  
pp. 326-330
Author(s):  
Xin Sun ◽  
Bai Sheng Nie ◽  
Sheng Chu Huang ◽  
Shou Tao Hu

This paper introduces occurrence characteristics of coal bed methane in China, and analyses the influence of coal seam permeability on coal mine methane extraction. In addition, it presents the mechanism of increasing permeability by pressure relief. Lastly, the methane extraction technologies are discussed, and the applicable conditions of these technologies are analyzed. It is seen that choosing appropriate methane drainage technology, often in combination with several technologies including ground drilling, underground drilling, and pressure relief and permeability improving measures, is crucial for geological complex coal seam, especially low permeability soft coal seam.


Sign in / Sign up

Export Citation Format

Share Document