scholarly journals Creep Behavior of Saturated Clay in Triaxial Test and a Hyperbolic Model

Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Bin Xiao ◽  
Minyun Hu ◽  
Peijiao Zhou ◽  
Yuke Lu ◽  
Yong Zhang

As one of the basic mechanical properties of soil, the creep property of a given type soil is related to stress path, and stress level. In this paper, triaxial shear creep tests under different deviatoric stress levels were performed on both intact sample and the reconstituted sample of clay taken from Hangzhou, China. Based on the Boltzmann linear superposition principle, the creep curves of the clay sample under different levels of deviatoric stress were obtained, and the creep characteristics of the intact sample and the reconstituted sample were compared in both total stress creep analysis and effective stress creep analysis. Furthermore, the creep curves were fitted using a hyperbolic creep model. The results show that (1) under the same stress level, the creep of intact sample evolves more than that of reconstituted sample; (2) the hyperbolic creep model is suited to describe the creep characteristics of intact and reconstituted clay, and the model parameters A s and B s can be linearly correlated to the stress level D r ; (3) for the application of the hyperbolic model, the total stress analysis works better, and the model parameters A s and B s can be determined by a linear relationship with Dr.

2012 ◽  
Vol 157-158 ◽  
pp. 622-627 ◽  
Author(s):  
Wen Ling Chen ◽  
Fa Suo Zhao

Firstly, the creep curves of mica-quartzose schist are obtained through the triaxial creep test, the triaxial creep characteristics are found out by analyzing the creep curves. Secondly, a linear viscoelastic model is established by using model theory, a viscoplastic model is established by using empirical formula, added the above two model, a non–linear viscous elastic-plastic creep model of mica-quartzose schist is obtained. Lastly, the creep model parameters are got by data fitting, the good consistency of the test curves and the theoretical curves show the right and reasonable of the creep model. The non–linear viscous elastic-plastic creep model established can well describe the accelerated creep of mica-quartzose schist.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Jun Feng ◽  
Yue Ma ◽  
Zaobao Liu

The present study takes the ratio of the matric suction to the net vertical stress and the ratio of the matric suction to the net mean stress as new unsaturated stress levels f and F , respectively. Based on the laboratory tests and theoretical derivation, the modified one-dimensional Mesri creep model and three-dimensional creep model were established, which takes the unsaturated stress level into account. Then, the one-dimensional and three-dimensional creep characteristics of the unsaturated viscous subsoil of an airport under different unsaturated stress levels were analyzed. The following conclusions could be drawn: (1) under different stress levels, the one-dimensional creep deformation of unsaturated soil has a power function relationship with time, and the change rate exponentially decreases with the stress level, which can be well-expressed by the proposed modified one-dimensional Mesri creep model; (2) under different stress levels, the three-dimensional creep strain of the unsaturated soil shows a hyperbolic curve with time and a near-linear relationship at the semilogarithmic coordinate, which can be well-expressed by the proposed modified three-dimensional creep model; (3) under different stress levels, both the one-dimensional creep and three-dimensional creep of the unsaturated soil can be divided into two stages, which are the accelerated creep stage and stable creep stage.


Materials ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 983
Author(s):  
Shixu Wu ◽  
Keting Tong ◽  
Jianmin Wang ◽  
Yushun Li

To expand the application of bamboo as a building material, a new type of box section composite column that combined bamboo and steel was considered in this paper. The creep characteristics of eight bamboo-steel composite columns with different parameters were tested to evaluate the effects of load level, section size and interface type under long-term loading. Then, the deformation development of the composite column under long-term loading was observed and analyzed. In addition, the creep-time relationship curve and the creep coefficient were created. Furthermore, the creep model of the composite column was proposed based on the relationship between the creep of the composite column and the creep of bamboo, and the calculated value of creep was compared with the experimental value. The experimental results showed that the creep development of the composite column was fast at first, and then became stable after about 90 days. The creep characteristics were mainly affected by long-term load level and section size. The creep coefficient was between 0.160 and 0.190. Moreover, the creep model proposed in this paper was applicable to predict the creep development of bamboo-steel composite columns. The calculation results were in good agreement with the experimental results.


2019 ◽  
Vol 43 (2) ◽  
pp. 199-208 ◽  
Author(s):  
Cun-Gui Yu ◽  
Tong-Sheng Sun ◽  
Guang-Yuan Xiao

In this paper, the creep performance of a multi-barrel rocket launch canister under long-term stacking storage is studied. Based on the Bailey–Norton model, a creep model for the frame material of a launch canister was established. Constant stress tensile creep tests under different stress levels at room temperature were carried out on the frame materials of the launch canister and the creep model parameters were obtained by test data fitting. The three-dimensional finite element model of the launch canister was established in the ABAQUS software environment and the creep deformation of the launch canister after long-term stacking storage was studied. The results indicated that the bottom layer of the launch canister frame presented an extended residual deformation when the stacking storage solution with the original support pad was used. Therefore, a position adjustment program of the support pad was put forward. The residual deformation of the launch canister frame after long-term storage could be significantly reduced, thus the performance requirements for the launch canister are guaranteed.


Energies ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 6362
Author(s):  
Sheng-Qi Yang ◽  
Jin-Zhou Tang ◽  
Derek Elsworth

Utilizing underground coal gasification cavities for carbon capture and sequestration provides a potentially economic and sustainable solution to a vexing environmental and energy problem. The thermal influence on creep properties and long-term permeability evolution around the underground gasification chamber is a key issue in UCG-CCS operation in containing fugitive emissions. We complete multi-step loading and unloading creep tests with permeability measurement at confining stresses of 30 MPa on pre-cracked sandstone specimens thermally heat-treated to 250, 500, 750 and 1000 °C. Observations indicate a critical threshold temperature of 500 °C required to initiate thermally-induced cracks with subsequent strength reduction occurring at 750 °C. Comparison of histories of creep, visco-elastic and visco-plastic strains highlight the existence of a strain jump at a certain deviatoric stress level—where the intervening rock bridge between the twin starter-cracks is eliminated. As the deviatoric stress level increases, the visco-plastic strains make up an important composition of total creep strain, especially for specimens pre-treated at higher temperatures, and the development of the visco-plastic strain leads to the time-dependent failure of the rock. The thermal pre-treatment produces thermal cracks with their closure resulting in increased instantaneous elastic strains and instantaneous plastic strains. With increasing stress ratio, the steady-state creep rates increase slowly before the failure stress ratio but rise suddenly over the final stress ratio to failure. However, the pre-treatment temperature has no clear and apparent influence on steady creep strain rates. Rock specimens subject to higher pre-treatment temperatures exhibit higher permeabilities. The pre-existing cracks close under compression with a coplanar shear crack propagating from the starter-cracks and ultimately linking these formerly separate cracks. In addition, it is clear that the specimens pre-treated at higher temperatures accommodate greater damage.


Author(s):  
Nicola Bonora ◽  
Luca Esposito ◽  
Simone Dichiaro ◽  
Paolo Folgarait

Safe and accurate methods to predict creep crack growth (CCG) are required in order to assess the reliability of power generation plants components. With advances in finite element (FE) methods, more complex models incorporating damage can be applied in the study of CCG where simple analytical solutions or approximate methods are no longer applicable. The possibility to accurately simulate CCG depends not only on the damage formulation but also on the creep model since stress relaxation, occurring in the near tip region, controls the resulting creep rate and, therefore, crack initiation and growth. In this perspective, primary and tertiary creep regimes, usually neglected in simplified creep models, plays a relevant role and need to be taken into account. In this paper, an advanced multiaxial creep model [1], which incorporates damage effects, has been used to predict CCG in P91 high chromium steel. The model parameters have been determined based on uniaxial and multiaxial (round notched bar) creep data over a wide range of stress and temperature. Successively, the creep crack growth in standard compact tension sample was predicted and compared with available experimental data.


2018 ◽  
Vol 251 ◽  
pp. 02035
Author(s):  
Armen Ter-Martirosyan ◽  
Vitalii Sidorov ◽  
Lubov Ermoshina

At present, numerical methods of calculations, which are implemented in a large number of software complexes, are widely used in geotechnical practice and the definition of input parameters of the ground is very important and necessary to reflect the real work of the foundation of geotechnical structures [1-4]. There are often cases when the results obtained during laboratory tests of soils are not accepted by software complexes, errors are given, recommendations are proposed for changing the parameters in the direction of increasing or decreasing. In connection with these problems, the question arose about the need to optimize soil parameters obtained as a result of laboratory tests to compare and correct these parameters, based on the degree of approximation of model tests with laboratory tests [5]. Optimization of soil parameters can be carried out in the subroutine Soil test, incorporated in the PLAXIS geotechnical software [6]. Using the Soil test, the triaxial and compression tests are simulated based on the input parameters of the soil and the initial test data. The purpose of this study was to describe the methodology for optimizing the parameters of the Hardening Soil model and the Soft Soil Creep model using the PLAXIS 3D software geotechnical complex, as well as a comparative analysis of the results of laboratory soil tests with modeling results in software complex.


2012 ◽  
Vol 204-208 ◽  
pp. 289-296
Author(s):  
Xiao Bin Yang ◽  
Yang Li ◽  
Hai He Guan ◽  
Tian Yang Li ◽  
Jie Shan He

In order to study the creep properties of coal or rock containing gas, the creep properties of coal or rock without gas were studied firstly. Through analyzing the previous creep experiment results of coal or rock, one nonlinear damage creep model of coal or rock was founded based on the general Kelvin model. In this model, assumed that the damage is a function of stress level and time, and introduced one nonlinear hardened function into the general Kelvin model, the nonlinear damage fading creep equation and the nonlinear damage creep whole process equation were obtained. Besides this model, considering the composite structure of coal or rock, gas and gas absorption layer, and assuming that this structure has the stick-slip property under the outside load, so a stick-slip module was added in the general Kelvin model and a new nonlinear damage creep model of coal or rock containing gas was founded. Given the value of the material parameters in the two equations, the creep curves varied with the time were drawn under different axial compression. Through the theoretical curves, the nonlinear damage creep model in this paper was proved to be rational.


Sign in / Sign up

Export Citation Format

Share Document