scholarly journals GC-MS Based Metabolomics Reveals the Synergistic Mechanism of Gardeniae Fructus-Forsythiae Fructus Herb Pair in Lipopolysaccharide-Induced Acute Lung Injury Mouse Model

2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Wenhui Wu ◽  
Huiqing Lin ◽  
Ailing Yin ◽  
Cunsi Shen ◽  
Hongliang Zhou ◽  
...  

Compatibility remains among the crucial and significant characteristics of traditional Chinese medicines. The Gardeniae Fructus (FG)-Forsythiae Fructus (FF) herb pair, an epitome of formulations for heat-clearing and detoxification, is extensively used to treat bacterial pneumonia in clinical settings. However, there are few reports on their synergistic effects. This study thus investigated their compatibility by GC-MS based metabolomics using a lipopolysaccharide (LPS)-induced acute lung injury (ALI) mouse model. Differential metabolites were identified by both variable importance in the projection (VIP) > 1 in orthogonal partial least-squares discriminant analysis (OPLS-DA) mode and P < 0.05 . Results of biochemistry and histopathology indicated that FG-FF herb pair exerted more promising lung protective effect than its individual decoction against the LPS-induced ALI model. From the metabolomics study, 32 differential metabolites in vehicle vs. model groups, 21 differential metabolites in FF vs. model groups, 21 differential metabolites in FG vs. model groups, and 20 differential metabolites in FG-FF herb pair vs. model groups were found. Among them, the levels of 3-hydroxybutyric acid, alanine, isophthalic acid, and terephthalic acid were restored significantly in the FF group, while silanol and cholesterol were restored significantly in the FG group. For FG-FF treatment, the amount of behenic acid, a metabolite with anti-inflammatory properties, was increased, while palmitic acid, a proinflammatory metabolite, was decreased. Meanwhile, the two biomarkers were restored more significantly than that by FG or FF treatment, which indicated that the synergistic effects by FF coupled with FG might be attributed to restoring fatty acids metabolic pathway.

2018 ◽  
Vol 233 (9) ◽  
pp. 6615-6631 ◽  
Author(s):  
Wang Xie ◽  
Qingchun Lu ◽  
Kailing Wang ◽  
Jingjing Lu ◽  
Xia Gu ◽  
...  

2017 ◽  
Vol 8 ◽  
Author(s):  
Guosheng Wu ◽  
Junjie Wang ◽  
Pengfei Luo ◽  
An Li ◽  
Song Tian ◽  
...  

2020 ◽  
Vol 19 (5) ◽  
pp. 1001-1007
Author(s):  
Qiong Hu ◽  
Chunai Yang ◽  
Fenshuang Zheng ◽  
Hongdan Duan ◽  
Yangshan Fu ◽  
...  

Purpose: To investigate the effect of juglone on LPS induced lung injury in a mouse model and in TC 1cell line.Methods: Edema formation in lungs were measured by determination of lung wet/dry weight. Expressions of various proteins were assessed by western blot assay, while Sirt1 level was assessed using immunohistochemistry. Mice were randomly assigned to nine groups of 10 mice each: normal control, untreated and seven juglone treatment groups. Acute lung injury was induced in mice by injecting LPS (10 mg/kg) via intraperitoneal route (ip). The treatment groups were given 10, 20, 30, 40, 50, 60 and 100 μM of juglone, ip, respectively.Results: The levels of MMP-9, IL-6, IL-1β and iNOS were significantly higher in acute lung injury induced mice compared than the control group (p < 0.05). Treatment of the mice with juglone significantly decreased LPS-induced up-regulation of inflammatory cytokines in a dose-dependentmanner. The production of inflammatory cytokines was almost completely inhibited in the mice treated with 100 mg/kg dose of juglone, while treatment of the LPS-stimulated TC 1 cells with juglone upregulated the expression of Sirt1 mRNA. Down-regulation of Sirt1 expression by siRNA inhibited the effect of juglone on LPS-induced increase in inflammatory cytokine production.Conclusion: Juglone prevents lung injury in mice via up-regulation of Sirt1 expression. Therefore, juglone might be useful for the development of a treatment strategy for lung injury. Keywords: Inflammatory, Sirtuin, Edema, Cytokines, Lung injury, TC 1 lung alveolar epithelial cells, Sirt1


2013 ◽  
Vol 7 (6) ◽  
pp. 1889-1895 ◽  
Author(s):  
TONGXUN LI ◽  
JINGLAN ZHANG ◽  
JILIANG FENG ◽  
QIANG LI ◽  
LISONG WU ◽  
...  

2018 ◽  
Vol 234 (4) ◽  
pp. 4641-4654 ◽  
Author(s):  
Wen-Jing Zhong ◽  
Hui-Hui Yang ◽  
Xin-Xin Guan ◽  
Jian-Bing Xiong ◽  
Chen-Chen Sun ◽  
...  

2018 ◽  
Vol 40 (6) ◽  
pp. 769-780 ◽  
Author(s):  
Jian Lou ◽  
Yue Hu ◽  
Min-dan Wu ◽  
Luan-qing Che ◽  
Yin-fang Wu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document