scholarly journals An Analytical Solution for Seismic Interaction between Urban River-Canyon Topography and Nearby Buildings

2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Liguo Jin ◽  
Xujin Liu ◽  
Zhenghua Zhou ◽  
Su Chen

The interaction between urban river-canyon topography and the river-side building is investigated by using a whole analytic model of a semicircle river-canyon and a shear wall supported by a semicircle rigid foundation embedded in a homogenous half-space. The closed-form analytical solution for system response is presented based on the wave function expansion method. The analysis focuses on the effects of the canyon-building interaction on system response. The strength of the interaction between the river-canyon topography and the building changes periodically as the distance between the canyon and the structure increases, leading to the interaction having beneficial or harmful effects on the building’s seismic response. The foundation peak response of the building can be amplified by about 10%, and the peak of the building relative response can be amplified by about 40%. The distribution of canyon-structure spacing with strong or weak interaction is closely related to the dynamic characteristics of the building and the incident angle of the wave. When designing buildings along the river, the building and canyon should be analyzed as a whole model to determine whether the location of the building is in a position with strong interaction with the river-canyon. The model in this paper may be useful for obtaining insight into the effects of canyon-structure interaction and interpreting the observed response in buildings and seismic response estimation in general.

2021 ◽  
Vol 11 (21) ◽  
pp. 10343
Author(s):  
Liguo Jin ◽  
Xujin Liu ◽  
Hongyang Sun ◽  
Zhenghua Zhou

The interaction between subway tunnels is investigated by using a 2D analytic model of a twin tunnels system embedded in a homogenous half-space. The closed-form analytical solution for tunnel displacement response is derived through the wave function expansion method and the mirror method, and the correctness of the solution is verified through residuals convergence and comparison with the published results. The analysis focuses on the effects of tunnel relative stiffness on tunnel–soil–tunnel interaction. Tunnel relative stiffness has a great influence on tunnel displacement response. For small tunnel relative stiffness, tunnel displacement amplitude can be enlarged by 3.3 times that of single rigid tunnel model. The response of the tunnel–soil–tunnel interaction system depends not only on the distances between tunnels but also on the frequency of the incident wave and the incident angle. The strength of the interaction between the tunnels is highly related to the tunnel spacing distance. The smaller the distance between tunnels, the stronger the interaction between them. When the distance between tunnels reaches s/a = 20, the interaction between tunnels can be ignored. It is worth pointing out that the seismic design of underground tunnels should consider the interaction between tunnels when the tunnel distance is small.


2011 ◽  
Vol 90-93 ◽  
pp. 1602-1609
Author(s):  
Hong Wei Ma ◽  
Wen Hua Chen

In this paper, the seismic response of underwater shield tunnel to incident P waves is investigated by using the Fourier-Bessel series expansion method. On the basis of the exact analytical solution, it is studied that the seismic response of the system which is made up of tunnel lining structure, underwater soil and water. The influence that water depth and buried depth of shield tunnel put on the seismic response of tunnel lining is given. The analytical result shows that the seismic response of tunnel lining unobvious varies with water depth change when incident P waves have a small incident angle, nevertheless, opposite conclusion appears when oblique incident P waves have a big incident angle. At a certain incident angle, the seismic response of tunnel increases with the increasing of the water depth; and the seismic response decreases with the increasing of the buried depth of underwater tunnel.


Mathematics ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 704
Author(s):  
Wenjun An ◽  
Guquan Song ◽  
Shutong Chen

Given the influence of near-fault vertical seismic action, we established a girder-spring-damping-rod model of a double-span continuous girder bridge and used the transient wave function expansion method and indirect modal function method to calculate the seismic response of the bridge. We deduced the theoretical solution for the vertical and longitudinal contact force and displacement response of the bridge structure under the action of the near-fault vertical seismic excitation, and we analyzed the influence of the vertical separation of the bridge on the bending failure of the pier. Our results show that under the action of a near-fault vertical earthquake, pier-girder separation will significantly alter the bridge’s longitudinal displacement response, and that neglecting this separation may lead to the underestimation of the pier’s bending damage. Calculations of the bending moment at the bottom of the pier under different pier heights and cross-sectional diameters showed that the separation of the pier and the girder increases the bending moment at the pier’s base. Therefore, the reasonable design of the pier size and tensile support bearing in near-fault areas may help to reduce longitudinal damage to bridges.


Symmetry ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 692
Author(s):  
Wenjun An ◽  
Guquan Song

To study the influence of the near-fault vertical earthquake, the beam-spring-damper-pier model is used to simulate the double-span continuous beam bridge. The transient wave function expansion method and the indirect mode function method are used to calculate the seismic response of the bridge. The theoretical solutions of the contact force and displacement response of the bridge under vertical earthquake excitation near-fault are derived. By using piers with three different heights, the influence of vertical separation on pier-bending failure is analyzed reasonably. The results show that under the near-fault earthquake action, the split has a certain influence on the pier failure. Moreover, the stiffness and damping of the bearing have an influence on the pier failure, and the change of the maximum pier height has different effects. Therefore, for bridges of different sizes, it is of great significance to select the appropriate stiffness and damping bearings to reduce pier failure.


2018 ◽  
Vol 77 ◽  
pp. 103-114 ◽  
Author(s):  
Haitao Yu ◽  
Zhengwei Zhang ◽  
Juntao Chen ◽  
Antonio Bobet ◽  
Mi Zhao ◽  
...  

Author(s):  
Liguo Jin ◽  
Liting Du ◽  
Haiyan Wang

This paper presents a closed-form analytical solution for the dynamic response of two independent SDOF oscillators standing on one flexible foundation embedded in an elastic half-space and excited by plane SH waves. The solution is obtained by the wave function expansion method and is verified by comparison with the results of the special cases of a rigid foundation and the published research result of a flexible foundation. The model is utilized to investigate how the foundation stiffness influences the system response. The results show that there will be a significant interaction between the two independent structures on one flexible foundation and the intensity of the interaction is mainly dependent on foundation stiffness and structural stiffness. For a system with more flexible foundation, strong interaction will exist between the two structures; larger structural stiffness will also lead to a strong interaction between the two structures. When the structural mass and the structural stiffness are all larger, the flexible foundation cannot be treated as a rigid foundation even if the foundation stiffness is many times larger than that of soil. This model may be useful to get insight into the effects of foundation flexibility on the interaction of two independent structures standing on one flexible foundation.


Sign in / Sign up

Export Citation Format

Share Document