scholarly journals Exploration and Research on the Propagation Law of Seepage Risk Network in Tailings Storage Facility

2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Zhixin Zhen ◽  
Xuewei Ma ◽  
Bo Ma

The seepage accident of a tailings pond poses a serious threat to the stability of tailings dams and the surrounding environment. To reduce the occurrence of seepage accidents, this paper studies the identification of seepage hazards, the propagation law of seepage risk, the importance of hazards, and the priority of hazard treatment. To overcome the subjectivity and omission of hazard identification, according to the complexity and dynamics of tailings seepage, this paper proposes the evidence-based identification method of three-dimensional seepage hazards (EIMTSH) to identify the hazards of the tailings seepage system and the relationship between hazards. Then, on the basis of identifying the hazards of the tailings seepage system, the propagation network of seepage risk in tailing ponds (PNSRTP) is constructed based on the complex network theory. By analyzing the characteristics of the PNSRTP, it can be found that the propagation of seepage risk is scale-free and small-world. Through the node deletion method, this paper finds that the nodes with a higher degree value can reduce the network efficiency more quickly and should be governed first. By giving priority to the treatment of hazards with higher degree, the propagation of seepage risk can be reduced more quickly and the risk management level of tailings ponds can be improved, which is helpful to realize the sustainable development of mining production.

2021 ◽  
pp. 014459872098361
Author(s):  
Yanqiu Wang ◽  
Zhengxin Sun ◽  
Pengtai Li ◽  
Zhiwei Zhu

This paper analyzes the small cosmopolitan and stability of the industrial coupling symbiotic network of eco-industrial parks of oil and gas resource-based cities. Taking Daqing A Ecological Industrial Park as an example, we constructed the characteristic index system and calculated the topological parameters such as the agglomeration coefficient and the average shortest path length of the industrial coupling symbiotic network. Based on the complex network theory we analyzed the characteristics of the scaled world, constructed the adjacency matrix of material and information transfers between enterprises, drew the network topology diagram. We simulated the system analysis and analyzed the stability of the industrial coupling symbiotic network of the eco-industrial park using the network efficiency and node load and maximum connected subgraph. The analysis results are as follows: the small world degree δ of Daqing A Eco-industrial Park is 0.891, which indicates that the industrial coupled symbiotic network has strong small world characteristics; the average path is 1.268, and the agglomeration coefficient is 0.631. The probability of edge connection between two nodes in a symbiotic network is 63.1%, which has a relatively high degree of aggregation, indicating that energy and material exchanges are frequent among all enterprises in the network, the degree of network aggregation is high, and the dependence between nodes is high; when the tolerance parameter is 0 to 0.3, the network efficiency and the maximum connected subgraphs show a sharp change trend, indicating that the topology of the industrial coupling symbiotic network of the eco-industrial park changes drastically when the network is subjected to deliberate attacks. It is easy to cause the breakage of material flow and energy flow in the industrial park, which leads to the decline of the stability of the industrial coupling symbiotic network of the eco-industrial park.


2014 ◽  
Vol 23 (4) ◽  
pp. 423-435 ◽  
Author(s):  
Fei Li ◽  
Yu Yang ◽  
Jianzhong Xie ◽  
Aijun Liu ◽  
Qian Chen

AbstractPartner selection is an important aspect of the customer collaborative product innovation process and aims to select innovative customer partners from huge numbers of customers, fast and accurately. The purpose of this article is to present a quantitative partner selection method based on the complex network theory. In this method, the complex network model of the Online Community Customer Network (OCCN) is constructed, and network centrality is used as the initial index of customer partner selection. Then, network efficiency and delta centrality are used to evaluate the effect of the index. An example is presented to reflect the feasibility and efficiency of the proposed method. Results validate the small-world and scale-free properties of the OCCN and show that betweenness centrality is the most appropriate index for partner selection in the OCCN.


2008 ◽  
Vol 22 (05) ◽  
pp. 553-560 ◽  
Author(s):  
WU-JIE YUAN ◽  
XIAO-SHU LUO ◽  
PIN-QUN JIANG ◽  
BING-HONG WANG ◽  
JIN-QING FANG

When being constructed, complex dynamical networks can lose stability in the sense of Lyapunov (i. s. L.) due to positive feedback. Thus, there is much important worthiness in the theory and applications of complex dynamical networks to study the stability. In this paper, according to dissipative system criteria, we give the stability condition in general complex dynamical networks, especially, in NW small-world and BA scale-free networks. The results of theoretical analysis and numerical simulation show that the stability i. s. L. depends on the maximal connectivity of the network. Finally, we show a numerical example to verify our theoretical results.


2011 ◽  
Vol 145 ◽  
pp. 224-228 ◽  
Author(s):  
Xiao Song ◽  
Bing Cheng Liu ◽  
Guang Hong Gong

Military SoS increasingly shows its relation of complex network. According to complex network theory, we construct a SoS network topology model for network warfare simulation. Analyzing statistical parameters of the model, it is concluded that the topology model has small-world, high-aggregation and scale-free properties. Based on this model we mainly simulate and analyze vulnerability of the network. And this provides basis for analysis of the robustness and vulnerability of real battle SoS network.


2015 ◽  
Vol 26 (09) ◽  
pp. 1550104 ◽  
Author(s):  
Bai-Bai Fu ◽  
Lin Zhang ◽  
Shu-Bin Li ◽  
Yun-Xuan Li

In this work, we have collected 195 bus routes and 1433 bus stations of Jinan city as sample date to build up the public transit geospatial network model by applying space L method, until May 2014. Then, by analyzing the topological properties of public transit geospatial network model, which include degree and degree distribution, average shortest path length, clustering coefficient and betweenness, we get the conclusion that public transit network is a typical complex network with scale-free and small-world characteristics. Furthermore, in order to analyze the survivability of public transit network, we define new network structure entropy based on betweenness importance, and prove its correctness by giving that the new network structure entropy has the same statistical characteristics with network efficiency. Finally, the "inflexion zone" is discovered, which can be taken as the momentous indicator to determine the public transit network failure.


2015 ◽  
Vol 19 (7) ◽  
pp. 3301-3318 ◽  
Author(s):  
M. J. Halverson ◽  
S. W. Fleming

Abstract. Network theory is applied to an array of streamflow gauges located in the Coast Mountains of British Columbia (BC) and Yukon, Canada. The goal of the analysis is to assess whether insights from this branch of mathematical graph theory can be meaningfully applied to hydrometric data, and, more specifically, whether it may help guide decisions concerning stream gauge placement so that the full complexity of the regional hydrology is efficiently captured. The streamflow data, when represented as a complex network, have a global clustering coefficient and average shortest path length consistent with small-world networks, which are a class of stable and efficient networks common in nature, but the observed degree distribution did not clearly indicate a scale-free network. Stability helps ensure that the network is robust to the loss of nodes; in the context of a streamflow network, stability is interpreted as insensitivity to station removal at random. Community structure is also evident in the streamflow network. A network theoretic community detection algorithm identified separate communities, each of which appears to be defined by the combination of its median seasonal flow regime (pluvial, nival, hybrid, or glacial, which in this region in turn mainly reflects basin elevation) and geographic proximity to other communities (reflecting shared or different daily meteorological forcing). Furthermore, betweenness analyses suggest a handful of key stations which serve as bridges between communities and might be highly valued. We propose that an idealized sampling network should sample high-betweenness stations, small-membership communities which are by definition rare or undersampled relative to other communities, and index stations having large numbers of intracommunity links, while retaining some degree of redundancy to maintain network robustness.


Fractals ◽  
2019 ◽  
Vol 27 (06) ◽  
pp. 1950102
Author(s):  
DONG-YAN LI ◽  
XING-YUAN WANG ◽  
PENG-HE HUANG

The structure of network has a significant impact on the stability of the network. It is useful to reveal the effect of fractal structure on the vulnerability of complex network since it is a ubiquitous feature in many real-world networks. There have been many studies on the stability of the small world and scale-free models, but little has been down on the quantitative research on fractal models. In this paper, the vulnerability was studied from two perspectives: the connection pattern between hubs and the fractal dimensions of the networks. First, statistics expression of inter-connections between any two hubs was defined and used to represent the connection pattern of the whole network. Our experimental results show that statistic values of inter-connections were obvious differences for each kind of complex model, and the more inter-connections, the more stable the network was. Secondly, the fractal dimension was considered to be a key factor related to vulnerability. Here we found the quantitative power function relationship between vulnerability and fractal dimension and gave the explicit mathematical formula. The results are helpful to build stable artificial network models through the analysis and comparison of the real brain network.


2011 ◽  
Vol 2011 ◽  
pp. 1-12 ◽  
Author(s):  
Shouwei Li ◽  
Jianmin He

This paper first constructs a tiered network model of the interbank market. Then, from the perspective of contagion risk, it studies numerically the resilience of four types of interbank market network models to shocks, namely, tiered networks, random networks, small-world networks, and scale-free networks. This paper studies the interbank market with homogeneous and heterogeneous banks and analyzes random shocks and selective shocks. The study reveals that tiered interbank market networks and random interbank market networks are basically more vulnerable against selective shocks, while small-world interbank market networks and scale-free interbank market networks are generally more vulnerable against random shocks. Besides, the results indicate that, in the four types of interbank market networks, scale-free networks have the highest stability against shocks, while small-world networks are the most vulnerable. When banks are homogeneous, faced with selective shocks, the stability of the tiered interbank market networks is slightly lower than that of random interbank market networks, whereas, in other cases, the stability of the tiered interbank market networks is basically between that of random interbank market networks and that of scale-free interbank market networks.


2014 ◽  
Vol 539 ◽  
pp. 355-359
Author(s):  
Wen Long Yu

This article will complex network theory is introduced to the world's leading technology innovation cooperation network study, continue to deepen the theoretical study, by numerical simulation and empirical research on the method of combining technical innovation cooperation network to the evolution mechanism and its small world, scale-free characteristics were studied. First perfect the network modeling work decline period. Secondly, put forward the strategy of technology innovation diffusion, namely random selection, target selection and associated enterprises selection strategy, and compares the advantages and disadvantages of relationship between different strategies. Finally, combined the status quo of the cooperation technological innovation in our country, respectively from two levels to enterprises and government strengthen enterprise technical cooperation and improve enterprise technology innovation ability, and puts forward some Suggestions and countermeasures of technology innovation cooperation network further study is forecasted.


Complexity ◽  
2017 ◽  
Vol 2017 ◽  
pp. 1-17 ◽  
Author(s):  
Yongliang Deng ◽  
Liangliang Song ◽  
Zhipeng Zhou ◽  
Ping Liu

Capturing the interrelations among risks is essential to thoroughly understand and promote coal mining safety. From this standpoint, 105 risks and 135 interrelations among risks had been identified from 126 typical accidents, which were also the foundation of constructing coal mine risk network (CMRN). Based on the complex network theory and Pajek, six parameters (i.e., network diameter, network density, average path length, degree, betweenness, and clustering coefficient) were employed to reveal the topological properties of CMRN. As indicated by the results, CMRN possesses scale-free network property because its cumulative degree distribution obeys power-law distribution. This means that CMRN is robust to random hazard and vulnerable to deliberate attack. CMRN is also a small-world network due to its relatively small average path length as well as high clustering coefficient, implying that accident propagation in CMRN is faster than regular network. Furthermore, the effect of risk control is explored. According to the result, it shows that roof collapse, fire, and gas concentration exceeding limit refer to three most valuable targets for risk control among all the risks. This study will help offer recommendations and proposals for making beforehand strategies that can restrain original risks and reduce accidents.


Sign in / Sign up

Export Citation Format

Share Document