scholarly journals A Multicomponent Thermal Fluid Numerical Simulation Method considering Formation Damage

Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Xinan Yu ◽  
Xiaoping Li ◽  
Shuoliang Wang ◽  
Yi Luo

Multicomponent thermal fluid huff and puff is an innovative heavy oil development technology for heavy oil reservoirs, which has been widely used in offshore oilfields in China and has proved to be a promising method for enhancing oil recovery. Components of multicomponent thermal fluids contain many components, including carbon dioxide, nitrogen, and steam. Under high temperature and high pressure conditions, the complex physical and chemical reactions between multicomponent thermal fluids and reservoir rocks occur, which damage the pore structure and permeability of core. In this paper, the authors set up a reservoir damage experimental device, tested the formation permeability before and after the injection of multiple-component thermal fluids, and obtained the formation damage model. The multicomponent thermal fluid formation damage model is embedded in the component control equation, the finite difference method is used to discretize the control equation, and a new multielement thermal fluid numerical simulator is established. The physical simulation experiment of multicomponent thermal fluid huff and puff is carried out by using the actual sand-packed model. By comparing the experimental results with the numerical simulation results, it is proved that the new numerical simulation model considering formation damage proposed in this paper is accurate and reliable.

SPE Journal ◽  
2019 ◽  
Vol 24 (02) ◽  
pp. 413-430
Author(s):  
Zhanxi Pang ◽  
Lei Wang ◽  
Zhengbin Wu ◽  
Xue Wang

Summary Steam-assisted gravity drainage (SAGD) and steam and gas push (SAGP) are used commercially to recover bitumen from oil sands, but for thin heavy-oil reservoirs, the recovery is lower because of larger heat losses through caprock and poorer oil mobility under reservoir conditions. A new enhanced-oil-recovery (EOR) method, expanding-solvent SAGP (ES-SAGP), is introduced to develop thin heavy-oil reservoirs. In ES-SAGP, noncondensate gas and vaporizable solvent are injected with steam into the steam chamber during SAGD. We used a 3D physical simulation scale to research the effectiveness of ES-SAGP and to analyze the propagation mechanisms of the steam chamber during ES-SAGP. Under the same experimental conditions, we conducted a contrast analysis between SAGP and ES-SAGP to study the expanding characteristics of the steam chamber, the sweep efficiency of the steam chamber, and the ultimate oil recovery. The experimental results show that the steam chamber gradually becomes an ellipse shape during SAGP. However, during ES-SAGP, noncondensate gas and a vaporizable solvent gather at the reservoir top to decrease heat losses, and oil viscosity near the condensate layer of the steam chamber is largely decreased by hot steam and by solvent, making the boundary of the steam chamber vertical and gradually a similar, rectangular shape. As in SAGD, during ES-SAGP, the expansion mechanism of the steam chamber can be divided into three stages: the ascent stage, the horizontal-expansion stage, and the descent stage. In the ascent stage, the time needed is shorter during ES-SAGP than during SAGP. However, the other two stages take more time during nitrogen, solvent, and steam injection to enlarge the cross-sectional area of the bottom of the steam chamber. For the conditions in our experiments, when the instantaneous oil/steam ratio is lower than 0.1, the corresponding oil recovery is 51.11%, which is 7.04% higher than in SAGP. Therefore, during ES-SAGP, not only is the volume of the steam chamber sharply enlarged, but the sweep efficiency and the ultimate oil recovery are also remarkably improved.


2014 ◽  
Vol 941-944 ◽  
pp. 1477-1482
Author(s):  
Xu Tao Nie ◽  
Wan Hua Chen ◽  
Yuan Xing Wang

High-cycle fatigue damage analysis and life prediction is a most crucial problem in the research field of solid mechanics. Based on the thermodynamic potentials in the framework of thermodynamics a numerical method for high-cycle fatigue damage was studied and provided by using a two-scale damage model. Furthermore, according to the “jump-in-cycles” procedure the numerical simulation of high-cycle fatigue damage was implemented in a user subroutine of ABAQUS software. Finally, a numerical simulation instance of high-cycle fatigue damage was provided and compared with a set of test data, which indicates that the numerical simulation method presented is reasonable and applicable.


2013 ◽  
Vol 318 ◽  
pp. 405-409 ◽  
Author(s):  
Ju Hua Li ◽  
Rong Bao ◽  
Bin Qin ◽  
Tao Jiang

The nature of injected gas dispersion in oil distinguishes foamy oil behavior from conventional heavy oil behavior. Unlike normal two-phase flow, it involves flow of dispersed gas bubbles with pseudo single phase. This paper presents the results of a numerical simulation study of the stability of foamy oil created by liberation of dissolved gas during natural gas huff and puff process. Through the history matching of labs test conducted by three series of various core tubes in numerical simulation, foamy oil impactions on recovery were discussed based on vertical heterogeneous model. The effects on the stability of foamy oil flow behavior were investigated by mobility ratio, viscous to gravity ratio, layer permeability contrast, vertical to horizontal permeability ratio and the transverse dispersion number in the paper. The results show that foamy oil stability increases with higher oil viscosity, higher injection gas density. The oil recovery decrease with the mobility ratio and the layer permeability contrast, while the oil recovery increase with the vertical to horizontal permeability ratio. This work demonstrates that the transverse dispersion number should be used to assess vertical or microscopic sweep efficiency. The study indicates that foamy oil in porous media during production is unstable, but it will be huge potentials to apply natural gas huff and puff for ultra-deep heavy oil reservoirs.


2012 ◽  
Vol 588-589 ◽  
pp. 1259-1263
Author(s):  
Yu Zhang ◽  
Rui Sun

Shield cutterhead is the key part of tunneling construction machinery. Because the cutterhead can cut the front soil by the cutter on the cutterhead, it’s of great significance for the design of the cutterhead to research the dynamic process of cutter cutting. With using extended Drucker-Prager constitutive model and damage model which has element removing function, the properties of soil material can be simulated more practically. The results also provide a simulation method of soil material on researching cutterhead tunneling process. Combined with finite element dynamic contact characteristics, it is obtained the regulation of cutting force changing with time and cutting force value in the process of cutter cutting. The results also offer a engineering parameters for researching the load state of cutterhead tunneling.


SPE Journal ◽  
2014 ◽  
Vol 20 (01) ◽  
pp. 79-87 ◽  
Author(s):  
S.M.. M. Shuwa ◽  
B.Y.. Y. Jibril ◽  
Y.M.. M. Al-Wahaibi ◽  
R.S.. S. Al-Hajri

Summary Because of increasing energy demand, unconventional resources such as heavy oil are being explored and recovered. Enhanced-oil-recovery (EOR) methods such as surfactants and polymer flooding must be optimized and new chemicals must be designed to produce more oil. This paper introduces a new deep eutectic solvent (DES) that is based on choline chloride/ethylene glycol for EOR. As preliminary investigations revealed, different concentrations of DES solutions in brine (0 to 100 vol%) were characterized by measuring density, viscosity, conductivity, surface tension, and refractive index at different temperatures (25 to 55°C). Then, the effects of the DES/brine solutions on emulsification with oil phase, wettability alteration, oil/solvent interfacial tension (IFT), formation damage, and tertiary heavy-oil recovery were studied. Potential of the DES solution on enhancing heavy-oil recovery was explored by use of coreflood experiments. This was performed at reservoir condition (pressure = 1,200 psi, temperature = 45 to 80°C) with Berea sandstone core samples and fluids from the field of interest (formation brine and crude oil). An increase in IFT rather than a decrease was observed between the DES/brine solution and the oil. The spontaneous-water-imbibition tests suggested that a decrease in oil-wetness led to an increase in oil production. Approximately 52% of residual oil after waterflooding was recovered with the DES from the coreflooding. The results show an increase in oil recovery with reservoir temperature (6, 13, and 16% on the basis of initial oil in place at 45, 60 and 80°C, respectively). The interaction of the DES with the core materials did not lead to formation damage, as demonstrated by the permeability measurements of the DES/brine solution before and after injection. Viscous forces and wettability alteration were found to be the dominant mechanisms for the tertiary oil-recovery enhancement.


2012 ◽  
Vol 550-553 ◽  
pp. 2878-2882 ◽  
Author(s):  
Ping Yuan Gai ◽  
Fang Hao Yin ◽  
Ting Ting Hao ◽  
Zhong Ping Zhang

Based on the issue of enhancing oil recovery of heavy oil reservoir after steam injection, this paper studied the development characteristics of hot water flooding in different rhythm (positive rhythm, anti-rhythm, complex rhythm) reservoir after steam drive by means of physical simulation. The research shows that the positive rhythm reservoir has a large swept volume with steam flooding under the influence of steam overlay and steam channeling. Anti-rhythm reservoir has a large swept volume with hot water flooding, because hot water firstly flows along the high permeability region in upper part of the reservoir, in the process of displacement, hot water migrates to the bottom of reservoir successively for its higher density.


Sign in / Sign up

Export Citation Format

Share Document