scholarly journals Design Method for Specific Charge in Deep Mining considering Influence of In Situ Stress

2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Fengpeng Zhang ◽  
Qiqi Hao ◽  
Xiulong Wang ◽  
Zhaoguo Qiu

In situ stress has a large influence on blasts in deep mines and should be considered in blasting design. In this study, explosion crater tests were conducted to investigate the variation of specific charges under different stress loading conditions. It was revealed that rock blasting under high stress is different from that under low stress. A correction coefficient for specific charge was defined to consider the influence of in situ stress on blasting. A quantitative relation between the correction coefficient, stress-to-strength ratio, and lateral stress coefficient was presented. Based on the explosion-crater test results, a design method for specific charges was proposed with the consideration of in situ stress. Finally, the design method was applied to a field blasting test at Hongtoushan Copper Mine. The test results indicate that the proposed design method can effectively use the high in situ stress at depth for rock fragmentation. Compared with the original blasting design, the specific charge is reduced by 19.8% and the average block rate is reduced from 6.8% to 2.84%. At the same time, the blasting boundary is well controlled and the ore loss and dilution rates are reduced. This research has important guiding significance to deep mine blasting design.

SPE Journal ◽  
2019 ◽  
Vol 24 (05) ◽  
pp. 2148-2162 ◽  
Author(s):  
Pengcheng Fu ◽  
Jixiang Huang ◽  
Randolph R. Settgast ◽  
Joseph P. Morris ◽  
Frederick J. Ryerson

Summary The height growth of a hydraulic fracture is known to be affected by many factors that are related to the layered structure of sedimentary rocks. Although these factors are often used to qualitatively explain why hydraulic fractures usually have well–bounded height growth, most of them cannot be directly and quantitatively characterized for a given reservoir to enable a priori prediction of fracture–height growth. In this work, we study the role of the “roughness” of in–situ–stress profiles, in particular alternating low and high stress among rock layers, in determining the tendency of a hydraulic fracture to propagate horizontally vs. vertically. We found that a hydraulic fracture propagates horizontally in low–stress layers ahead of neighboring high–stress layers. Under such a configuration, a fracture–mechanics principle dictates that the net pressure required for horizontal growth of high–stress layers within the current fracture height is significantly lower than that required for additional vertical growth across rock layers. Without explicit consideration of the stress–roughness profile, the system behaves as if the rock is tougher against vertical propagation than it is against horizontal fracture propagation. We developed a simple relationship between the apparent differential rock toughness and characteristics of the stress roughness that induce equivalent overall fracture shapes. This relationship enables existing hydraulic–fracture models to represent the effects of rough in–situ stress on fracture growth without directly representing the fine–resolution rough–stress profiles.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Jianan Li ◽  
Heping Xie ◽  
Ling Chen ◽  
Cong Li ◽  
Zhiqiang He

Exploration of deep-rock mechanics has a significant influence on the techniques of mining and rock mechanics. Rock coring technique is the basic method for all rock mechanics study. With the increase of the drilling depth and increasing strength of the hard rock, how to obtain high-quality rock core through various coring techniques is an eternal work. Here an innovative method is applied to design the new coring system to maximize the efficiency of operation. The stress conditions or parameters of rock core in the coring are analyzed, and the mechanism of the core with in situ stress is shown in this paper. The conflict of the core and coring tool chamber is proposed for the innovative design. The innovative design method is fulfilled by the theory of inventive problem solving (TRIZ). An improved coring system for the full-length core with in situ stress was obtained with the solutions of improved coring mechanism, cutting mechanism, and spiral drill pipe.


SPE Journal ◽  
2020 ◽  
Vol 25 (06) ◽  
pp. 3091-3110
Author(s):  
Ming Chen ◽  
Shicheng Zhang ◽  
Tong Zhou ◽  
Xinfang Ma ◽  
Yushi Zou

Summary Creating uniform multiple fractures is a challenging task due to reservoir heterogeneity and stress shadow. Limited-entry perforation and in-stage diversion are commonly used to improve multifracture treatments. Many studies have investigated the mechanism of limited-entry perforation for multifracture treatments, but relatively few have focused on the in-stage diversion process. The design of in-stage diversion is usually through trial and error because of the lack of a simulator. In this study, we present a fully coupled planar 2D multifracture model for simulating the in-stage diversion process. The objective is to evaluate flux redistribution after diversion and optimize the dosage of diverters and diversion timing under different in-stage in-situ stress difference. Our model considers ball sealer allocation and solves flux redistribution after diversion through a fully coupled multifracture model. A supertimestepping explicit algorithm is adopted to solve the solid/fluid coupling equations efficiently. Multifracture fronts are captured by using tip asymptotes and an adaptive time-marching approach. The modeling results are validated against analytical solutions for a plane-strain Khristianovic-Geertsma de Klerk (KGD) model. A series of numerical simulations are conducted to investigate the multifracture growth under different in-stage diversion operations. Parametric studies reveal that the in-stage in-situ stress difference is a critical parameter for diversion designs. When the in-situ stress difference is larger than 2 MPa, the fracture in the high-stress zone can hardly be initiated before diversion for a general fracturing design. More ball sealers are required for the formations with higher in-stage in-situ stress difference. The diverting time should be earlier for formations with high in-stage stress differences as well. Adding more perforation holes in the zone with higher in-situ stress is recommended to achieve even flux distribution. The results of this study can help understand the multifracture growth mechanism during in-stage diversion and optimize the diversion design timely.


2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Jing Yang ◽  
Xing-Guo Yang ◽  
Jia-Wen Zhou ◽  
Yong Liu ◽  
Bao-Shun Dong ◽  
...  

The rock mass failure induced by high in-situ stresses during the excavation of deep diversion tunnels is one of the key problems in the construction of the Jinping II Hydropower Station. Based on the results of acoustic wave tests and rockburst statistical analysis conducted, this study focuses on the excavation damaged zone (EDZ) and rockburst events in the Jinping II diversion tunnels excavated using the tunnel boring machine (TBM) method and the drilling-blasting method. The unloading failure mechanism and the rockburst induced by the two different excavation methods were compared and analyzed. The results indicate that, due to the different stress adjustment processes, the degree of damage to the surrounding rock mass excavated using the drilling-blasting method was more serious than that using the TBM method. The EDZ induced by the TBM was usually distributed evenly along the edge of the excavation surface. While, the drilling-blasting method was more likely to cause stress concentration, resulting in a deeper EDZ in local areas. However, the TBM excavation method can cause other problems in high in-situ stress areas, such as strong rockbursts. The drilling-blasting method is more prone to structural controlled failure of the surrounding rock mass, while the TBM method would induce high stress concentration near the edge of excavation and more widely distributed of stress adjustment induced failure. As a result, the scale and frequency of the rockburst events generated by the TBM were significantly greater than those caused by the drilling-blasting method during the excavation of Jinping II diversion tunnels. The TBM method should be used carefully for tunnel excavation in high in-situ stress areas with burial depths of greater than 2000 m. If it is necessary to use the TBM method after a comprehensive selection, it is suggested that equipment adaptability improvement, advanced prediction, and prediction technology be used.


Energies ◽  
2019 ◽  
Vol 12 (5) ◽  
pp. 888 ◽  
Author(s):  
Hua Zhang ◽  
Shunde Yin ◽  
Bernt Aadnoy

Borehole breakouts appear in drilling and production operations when rock subjected to in situ stress experiences shear failure. However, if a borehole breakout occurs, the boundary of the borehole is no longer circular and the stress distribution around it is different. So, the interpretation of the hydraulic fracturing test results based on the Kirsch solution may not be valid. Therefore, it is important to investigate the factors that may affect the correct interpretation of the breakdown pressure in a hydraulic fracturing test for a borehole that had breakouts. In this paper, two steps are taken to implement this investigation. First, sets of finite element modeling provide sets of data on borehole breakout measures. Second, for a given measure of borehole breakouts, according to the linear relation between the mud pressure and the stress on the borehole wall, the breakdown pressure considering the borehole breakouts is acquired by applying different mud pressure in the model. Results show the difference between the breakdown pressure of a circular borehole and that of borehole that had breakouts could be as large as 82% in some situations.


1984 ◽  
Vol 106 (4) ◽  
pp. 554-561 ◽  
Author(s):  
D. Segalman

A mathematical formulation has been developed for calculating the cross-sectional shape of hydraulic fractures. This formulation treats the problem as a free-boundary-type problem and is modeled after mathematical formulations developed for contact and lubrication problems. Numerical solution of the resulting equations has been used to address problems involving particularly difficult in-situ stress distributions, including problems in which the fracture breaks through high-stress barriers. The technique is illustrated on two example problems.


1988 ◽  
Vol 25 (2) ◽  
pp. 320-337 ◽  
Author(s):  
R. C. K. Wong ◽  
P. K. Kaiser

Ground deformations around axisymmetric shafts cannot be determined with the design approaches currently available, which are mostly based on plasticity methods. The convergence–confinement method (usually applied to tunnels), with consideration of gravitational effects and the three-dimensional conditions near a shaft, is proposed as a tool to predict formation pressure on a shaft and radial ground displacements. It is shown that the behaviour of a shaft is governed by (1) the mode of yield initiation dominated by the in situ stress state and the soil strength parameters and (2) the extent of the yield zone that develops if wall displacements are allowed to occur during construction.Closed-form solutions are presented to approximate the pressure–displacement relationship for cohesionless and cohesive soils. Results from this approach compare well with those obtained by finite element analyses. The conventional design methods that provide the minimum support pressures required to maintain stability are not conservative. These pressures are generally less than those actually encountered if ground movements during construction are restricted with good ground control. Key words: shaft, design method, support, interaction, yielding, stress, displacement, earth pressure, arching.


2003 ◽  
Vol 40 (1) ◽  
pp. 36-45 ◽  
Author(s):  
Kenneth G Gavin ◽  
Barry M Lehane

This paper describes results from an experimental programme that investigated factors affecting the shaft capacity of open-ended (pipe) piles in sand. A number of jacked pile installations in a test chamber filled with loose sand were performed using both open- and closed-ended, 114 mm diameter piles. The test series was designed to investigate the effects of in situ stress level, pile end condition, and degree of plugging on the development of pile shaft resistance. The results indicate that the maximum local shaft resistance that can develop at a given location on a pipe pile may be expressed as a function of the incremental filling ratio of the soil plug during installation, the cone penetration test (CPT) qc value, and the relative position of the pile toe. The experimental results allowed a simple expression to be developed for the plug resistance during pile installation, and this is used in conjunction with a popular design method for closed-ended piles to provide a means of estimating the shaft capacity of open-ended piles. The new approach is shown to provide good estimates of overall shaft capacity and skin friction distribution.Key words: shaft capacity, pipe piles, sand.


2011 ◽  
Vol 393-395 ◽  
pp. 608-613
Author(s):  
Bing Shen Du ◽  
Li Ma

Based on soft and crumbly surrounding rock of roadway, poor integrity of roof, drench water in roadway, the large in-situ stress and other complex conditions, this paper analyzes the cause of roadway destruction and grouting strengthening mechanism, using the coupling of grouting technique to integrated strengthening for the region. Engineering application shows that the integrated strengthening effect is obvious, and the economic and technique effectiveness is remarkable. The successful application of secondary coupling grouting technology provides the reference for the mine laneway construction of similar geological conditions.


Author(s):  
Yu Wang ◽  
Qingning Qiao ◽  
Jianlin Li

UF cracks in rock masses commonly occur due to the unloading effect, which constantly happens after the variation of in-situ stress field or rock excavation. When undergoing periodic water fluctuation, rock mass with UF cracks is vulnerable to deterioration or even disintegration, especially for clay-bearing sandstone. To study the effect of changes in moisture on rock samples with UF cracks, clay-bearing sandstone from the Triassic Badong group in the Three Gorges Reservoir Area were chosen and investigated. The rock samples with UF cracks are obtained by conducting triaxial unloading confining pressure experiment. The effect of wet-dry cycles on the morphology properties and microstructure of the UF surface was investigated. The characteristics of particle-size uniformity from the sieve test were obtained by the calculation of RMS of particle contents. The test results show that UF cracks widen significantly and the disintegrated mass increases rapidly in the first three wet-dry cycles, while the fractal dimension of UF surface decreases sharply, but afterwards the disintegrated mass changes gently and the UF surface tends to be flat and smooth. Then, the RMS calculation of particle contents quantitatively evaluate the clay-bearing sandstone’s disintegration properties, which indicate the particle uniformity plays a key role on its disintegration mechanism. During wet-dry cycles, the tested samples tend to disintegrate more rapidly and entirely with the decrease of particle uniformity.


Sign in / Sign up

Export Citation Format

Share Document