scholarly journals Neural Correlates of Motor Recovery after Robot-Assisted Training in Chronic Stroke: A Multimodal Neuroimaging Study

2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Cheng Chen ◽  
Kai Yuan ◽  
Xin Wang ◽  
Ahsan Khan ◽  
Winnie Chiu-wing Chu ◽  
...  

Stroke is a leading cause of motor disability worldwide, and robot-assisted therapies have been increasingly applied to facilitate the recovery process. However, the underlying mechanism and induced neuroplasticity change remain partially understood, and few studies have investigated this from a multimodality neuroimaging perspective. The current study adopted BCI-guided robot hand therapy as the training intervention and combined multiple neuroimaging modalities to comprehensively understand the potential association between motor function alteration and various neural correlates. We adopted EEG-informed fMRI technique to understand the functional regions sensitive to training intervention. Additionally, correlation analysis among training effects, nonlinear property change quantified by fractal dimension (FD), and integrity of M1-M1 (M1: primary motor cortex) anatomical connection were performed. EEG-informed fMRI analysis indicated that for iM1 (iM1: ipsilesional M1) regressors, regions with significantly increased partial correlation were mainly located in contralesional parietal, prefrontal, and sensorimotor areas and regions with significantly decreased partial correlation were mainly observed in the ipsilesional supramarginal gyrus and superior temporal gyrus. Pearson’s correlations revealed that the interhemispheric asymmetry change significantly correlated with the training effect as well as the integrity of M1-M1 anatomical connection. In summary, our study suggested that multiple functional brain regions not limited to motor areas were involved during the recovery process from multimodality perspective. The correlation analyses suggested the essential role of interhemispheric interaction in motor rehabilitation. Besides, the underlying structural substrate of the bilateral M1-M1 connection might relate to the interhemispheric change. This study might give some insights in understanding the neuroplasticity induced by the integrated BCI-guided robot hand training intervention and further facilitate the design of therapies for chronic stroke patients.

2021 ◽  
Vol 14 (1) ◽  
pp. 8-15
Author(s):  
Loukas G. Astrakas ◽  
Shasha Li ◽  
Mark P. Ottensmeyer ◽  
Christian Pusatere ◽  
Michael A. Moskowitz ◽  
...  

Background: Ischemic stroke is the most common cause of complex chronic disability and the third leading cause of death worldwide. In recovering stroke patients, peak activation within the ipsilesional primary motor cortex (M1) during the performance of a simple motor task has been shown to exhibit an anterior shift in many studies and a posterior shift in other studies. Objective: We investigated this discrepancy in chronic stroke patients who completed a robot-assisted rehabilitation therapy program. Methods: Eight chronic stroke patients with an intact M1 and 13 Healthy Control (HC) volunteers underwent 300 functional magnetic resonance imaging (fMRI) scans while performing a grip task at different force levels with a robotic device. The patients were trained with the same robotic device over a 10-week intervention period and their progress was evaluated serially with the Fugl-Meyer and Modified Ashworth scales. Repeated measure analyses were used to assess group differences in locations of peak activity in the sensorimotor cortex (SM) and the relationship of such changes with scores on the Fugl-Meyer Upper Extremity (FM UE) scale. Results: Patients moving their stroke-affected hand had proportionally more peak activations in the primary motor area and fewer peak activations in the somatosensory cortex than the healthy controls (P=0.009). They also showed an anterior shift of peak activity on average of 5.3-mm (P<0.001). The shift correlated negatively with FM UE scores (P=0.002). Conclusion: A stroke rehabilitation grip task with a robotic device was confirmed to be feasible during fMRI scanning and thus amenable to be used to assess plastic changes in neurological motor activity. Location of peak activity in the SM is a promising clinical neuroimaging index for the evaluation and monitoring of chronic stroke patients.


2021 ◽  
pp. 1-11
Author(s):  
Francesca Biondo ◽  
Charlotte Nymberg Thunell ◽  
Bing Xu ◽  
Congying Chu ◽  
Tianye Jia ◽  
...  

Abstract Background Sex-related differences in psychopathology are known phenomena, with externalizing and internalizing symptoms typically more common in boys and girls, respectively. However, the neural correlates of these sex-by-psychopathology interactions are underinvestigated, particularly in adolescence. Methods Participants were 14 years of age and part of the IMAGEN study, a large (N = 1526) community-based sample. To test for sex-by-psychopathology interactions in structural grey matter volume (GMV), we used whole-brain, voxel-wise neuroimaging analyses based on robust non-parametric methods. Psychopathological symptom data were derived from the Strengths and Difficulties Questionnaire (SDQ). Results We found a sex-by-hyperactivity/inattention interaction in four brain clusters: right temporoparietal-opercular region (p < 0.01, Cohen's d = −0.24), bilateral anterior and mid-cingulum (p < 0.05, Cohen's d = −0.18), right cerebellum and fusiform (p < 0.05, Cohen's d = −0.20) and left frontal superior and middle gyri (p < 0.05, Cohen's d = −0.26). Higher symptoms of hyperactivity/inattention were associated with lower GMV in all four brain clusters in boys, and with higher GMV in the temporoparietal-opercular and cerebellar-fusiform clusters in girls. Conclusions Using a large, sex-balanced and community-based sample, our study lends support to the idea that externalizing symptoms of hyperactivity/inattention may be associated with different neural structures in male and female adolescents. The brain regions we report have been associated with a myriad of important cognitive functions, in particular, attention, cognitive and motor control, and timing, that are potentially relevant to understand the behavioural manifestations of hyperactive and inattentive symptoms. This study highlights the importance of considering sex in our efforts to uncover mechanisms underlying psychopathology during adolescence.


2016 ◽  
Vol 11 ◽  
pp. S136-S143
Author(s):  
Chunting He ◽  
Qingfen Chen ◽  
Longkun Zhu

Aim of this study was to locate the brain regions where Cryptococcus interact with brain cells and invade into brain. After 7 days of intratracheal inocula-tion of GFP-tagged Cryptococcus neoformans strains H99, serial cryosections (10 ?m) from 3 C57 BL/6 J mice brains were imaged with immunofluorescence microscopy. GFP-tagged H99 were found in some brain regions such as primary motor cortex-secondary motor cortex, caudate putamen, stratum lucidum of hippocampus, field CA1 of hippocampus, dorsal lateral geniculate nucleus, lateral posterior thalamic nucleus, laterorostral part, lateral posterior thalamic nucleus, mediorostral part, retrosplenial agranular cortex, lateral area of secondary visual cortex, and lacunosum molecular layer of the hippocampus. The results will be very useful for further exploring the mechanism of C. neoformans infection of brain. 


2020 ◽  
Author(s):  
Bryony Goulding Mew ◽  
Darije Custovic ◽  
Eyal Soreq ◽  
Romy Lorenz ◽  
Ines Violante ◽  
...  

AbstractFlexible behaviour requires cognitive-control mechanisms to efficiently resolve conflict between competing information and alternative actions. Whether a global neural resource mediates all forms of conflict or this is achieved within domainspecific systems remains debated. We use a novel fMRI paradigm to orthogonally manipulate rule, response and stimulus-based conflict within a full-factorial design. Whole-brain voxelwise analyses show that activation patterns associated with these conflict types are distinct but partially overlapping within Multiple Demand Cortex (MDC), the brain regions that are most commonly active during cognitive tasks. Region of interest analysis shows that most MDC sub-regions are activated for all conflict types, but to significantly varying levels. We propose that conflict resolution is an emergent property of distributed brain networks, the functional-anatomical components of which place on a continuous, not categorical, scale from domain-specialised to domain general. MDC brain regions place towards one end of that scale but display considerable functional heterogeneity.


2020 ◽  
Author(s):  
Ahmad Yousef

We had shown that deep breathing had been able to effectively and timely alter visual and auditory bistable perception, see reference 1, 2. Deep breathing requires cognitive control, and therefore, in this study, we decide to investigate whether voluntary movements of human hands are able to govern the audiovisual perception using an integrative stimulus that’s built up with the aforementioned visual and auditory stimuli. Astoundingly, when the human subjects moves the pen towards the actual physical direction, even without touching the screen; the original materials of the audiovisual stimulus appear. Reversed perception, namely, illusory motion reversals and illusory word appear when the pen is moved in the opposite direction of the actual motion. Cognitive actions’ brain areas, namely, dorsolateral prefrontal cortex, premotor cortex, and primary motor cortex may require high concentration of oxygenated hobgoblin red blood cells to achieve fulsome executive movements; and this could results in significant reduction of the concentrations of the oxygenated hobgoblin red blood cells in the visual and auditory cortices. Reductions that disallow one of two; the central versus the peripheral conscious brains dedicated for audiovisual perceptions, to rapidly alternate their conscious productions; and therefore, stoppage against bistable audiovisual perception will occur. We thus hypothesis that the DLPFC may send signals to deactivate the peripheral areas in the sensory brain regions when the cognitive action is harmonized with the actual material; but it may send a contrary signal to deactivate the central areas in the sensory brain regions when the cognitive action and the actual material are disharmonized.


Sign in / Sign up

Export Citation Format

Share Document