scholarly journals Mapping the common and distinct neural correlates of visual, rule and motor conflict

2020 ◽  
Author(s):  
Bryony Goulding Mew ◽  
Darije Custovic ◽  
Eyal Soreq ◽  
Romy Lorenz ◽  
Ines Violante ◽  
...  

AbstractFlexible behaviour requires cognitive-control mechanisms to efficiently resolve conflict between competing information and alternative actions. Whether a global neural resource mediates all forms of conflict or this is achieved within domainspecific systems remains debated. We use a novel fMRI paradigm to orthogonally manipulate rule, response and stimulus-based conflict within a full-factorial design. Whole-brain voxelwise analyses show that activation patterns associated with these conflict types are distinct but partially overlapping within Multiple Demand Cortex (MDC), the brain regions that are most commonly active during cognitive tasks. Region of interest analysis shows that most MDC sub-regions are activated for all conflict types, but to significantly varying levels. We propose that conflict resolution is an emergent property of distributed brain networks, the functional-anatomical components of which place on a continuous, not categorical, scale from domain-specialised to domain general. MDC brain regions place towards one end of that scale but display considerable functional heterogeneity.

2021 ◽  
pp. 1-11
Author(s):  
Francesca Biondo ◽  
Charlotte Nymberg Thunell ◽  
Bing Xu ◽  
Congying Chu ◽  
Tianye Jia ◽  
...  

Abstract Background Sex-related differences in psychopathology are known phenomena, with externalizing and internalizing symptoms typically more common in boys and girls, respectively. However, the neural correlates of these sex-by-psychopathology interactions are underinvestigated, particularly in adolescence. Methods Participants were 14 years of age and part of the IMAGEN study, a large (N = 1526) community-based sample. To test for sex-by-psychopathology interactions in structural grey matter volume (GMV), we used whole-brain, voxel-wise neuroimaging analyses based on robust non-parametric methods. Psychopathological symptom data were derived from the Strengths and Difficulties Questionnaire (SDQ). Results We found a sex-by-hyperactivity/inattention interaction in four brain clusters: right temporoparietal-opercular region (p < 0.01, Cohen's d = −0.24), bilateral anterior and mid-cingulum (p < 0.05, Cohen's d = −0.18), right cerebellum and fusiform (p < 0.05, Cohen's d = −0.20) and left frontal superior and middle gyri (p < 0.05, Cohen's d = −0.26). Higher symptoms of hyperactivity/inattention were associated with lower GMV in all four brain clusters in boys, and with higher GMV in the temporoparietal-opercular and cerebellar-fusiform clusters in girls. Conclusions Using a large, sex-balanced and community-based sample, our study lends support to the idea that externalizing symptoms of hyperactivity/inattention may be associated with different neural structures in male and female adolescents. The brain regions we report have been associated with a myriad of important cognitive functions, in particular, attention, cognitive and motor control, and timing, that are potentially relevant to understand the behavioural manifestations of hyperactive and inattentive symptoms. This study highlights the importance of considering sex in our efforts to uncover mechanisms underlying psychopathology during adolescence.


2015 ◽  
Vol 130 (1) ◽  
pp. 9-18 ◽  
Author(s):  
Meredith Hay

Hypertension is a major contributor to worldwide morbidity and mortality rates related to cardiovascular disease. There are important sex differences in the onset and rate of hypertension in humans. Compared with age-matched men, premenopausal women are less likely to develop hypertension. However, after age 60, the incidence of hypertension increases in women and even surpasses that seen in older men. It is thought that changes in levels of circulating ovarian hormones as women age may be involved in the increase in hypertension in older women. One of the key mechanisms involved in the development of hypertension in both men and women is an increase in sympathetic nerve activity (SNA). Brain regions important for the regulation of SNA, such as the subfornical organ, the paraventricular nucleus and the rostral ventral lateral medulla, also express specific subtypes of oestrogen receptors. Each of these brain regions has also been implicated in mechanisms underlying risk factors for hypertension such as obesity, stress and inflammation. The present review brings together evidence that links actions of oestrogen at these receptors to modulate some of the common brain mechanisms involved in the ability of hypertensive risk factors to increase SNA and blood pressure. Understanding the mechanisms by which oestrogen acts at key sites in the brain for the regulation of SNA is important for the development of novel, sex-specific therapies for treating hypertension.


2020 ◽  
Author(s):  
Mei Yan Melody Chan ◽  
Yvonne M.Y. Han

Abstract Background Impaired imitation has been found to be an important factor contributing to social communication deficits in individuals with autism spectrum disorder (ASD). It has been hypothesized that the neural correlates of imitation, the mirror neuron system (MNS), are dysfunctional in ASD, resulting in imitation impairment as one of the key behavioral manifestations in ASD. Previous MNS studies produced inconsistent results, leaving the debate of whether mirror neurons are “broken” in ASD unresolved.Methods This meta-analysis aimed to explore the differences in MNS activation patterns between typically developing (TD) and ASD individuals when they observe/imitate biological motions with/without emotional components. Effect-size signed differential mapping (ES-SDM) was adopted to synthesize the available fMRI data. Results The MNS is dysfunctional in ASD; not only the brain regions containing mirror neurons were affected, the brain regions supporting MNS functioning were also impaired. Second, MNS dysfunction in ASD is modulated by task complexity; differential activation patterns during the presentation of “cold” and “hot” stimuli might be a result of atypical functional connectivity in ASD. Third, MNS dysfunction in ASD individuals is modulated by age. MNS regions were found to show delayed maturation; abnormal lateralization development in some of the brain regions also contributed to the atypical development of the MNS in ASD. Limitations We have attempted to include a comprehensive set of original data for this analysis. However, whole brain analysis data were not obtainable from some of the published papers, these studies could not be included as a result. Moreover, the results indicating the age effect on MNS in ASD could only be generalized to individuals aged 11-37, as MNS activation remains unstudied for populations beyond this age range. Also, the ES-SDM linear regression modelling might not be ideal to illustrate the associations between age and MNS activation; the meta-regression results should be treated with caution. Conclusion There is a “global” rather than a “local” network dysfunction, which may underlie the imitation impairments in individuals with ASD. Task complexity and age modulate the functioning of the MNS, which may explain the previous peculiar results contributing to the unresolved “broken mirror neuron” debate.


2021 ◽  
Vol 12 ◽  
Author(s):  
João Castelhano ◽  
Gisela Lima ◽  
Marta Teixeira ◽  
Carla Soares ◽  
Marta Pais ◽  
...  

There is an increasing interest in the neural effects of psychoactive drugs, in particular tryptamine psychedelics, which has been incremented by the proposal that they have potential therapeutic benefits, based on their molecular mimicry of serotonin. It is widely believed that they act mainly through 5HT2A receptors but their effects on neural activation of distinct brain systems are not fully understood. We performed a quantitative meta-analysis of brain imaging studies to investigate the effects of substances within this class (e.g., LSD, Psilocybin, DMT, Ayahuasca) in the brain from a molecular and functional point of view. We investigated the question whether the changes in activation patterns and connectivity map into regions with larger 5HT1A/5HT2A receptor binding, as expected from indolaemine hallucinogens (in spite of the often reported emphasis only on 5HT2AR). We did indeed find that regions with changed connectivity and/or activation patterns match regions with high density of 5HT2A receptors, namely visual BA19, visual fusiform regions in BA37, dorsal anterior and posterior cingulate cortex, medial prefrontal cortex, and regions involved in theory of mind such as the surpramarginal gyrus, and temporal cortex (rich in 5HT1A receptors). However, we also found relevant patterns in other brain regions such as dorsolateral prefrontal cortex. Moreover, many of the above-mentioned regions also have a significant density of both 5HT1A/5HT2A receptors, and available PET studies on the effects of psychedelics on receptor occupancy are still quite scarce, precluding a metanalytic approach. Finally, we found a robust neuromodulatory effect in the right amygdala. In sum, the available evidence points towards strong neuromodulatory effects of tryptamine psychedelics in key brain regions involved in mental imagery, theory of mind and affective regulation, pointing to potential therapeutic applications of this class of substances.


2020 ◽  
Author(s):  
Ernest Mas-Herrero ◽  
Larissa Maini ◽  
Guillaume Sescousse ◽  
Robert J. Zatorre

ABSTRACTNeuroimaging studies have shown that, despite the abstractness of music, it may mimic biologically rewarding stimuli (e.g. food) in its ability to engage the brain’s reward circuity. However, due to the lack of research comparing music and other types of reward, it is unclear to what extent the recruitment of reward-related structures overlaps among domains. To achieve this goal, we performed a coordinate-based meta-analysis of 38 neuroimaging studies (703 subjects) comparing the brain responses specifically to music and food-induced pleasure. Both engaged a common set of brain regions including the ventromedial prefrontal cortex, ventral striatum, and insula. Yet, comparative analyses indicated a partial dissociation in the engagement of the reward circuitry as a function of the type of reward, as well as additional reward type-specific activations in brain regions related to perception, sensory processing, and learning. These results support the idea that hedonic reactions rely on the engagement of a common reward network, yet through specific routes of access depending on the modality and nature of the reward.


2016 ◽  
Author(s):  
Chuan-Peng Hu ◽  
Yi Huang ◽  
Simon B. Eickhoff ◽  
Kaiping Peng ◽  
Jie Sui

AbstractThe existence of a common beauty is a long-standing debate in philosophy and related disciplines. In the last two decades, cognitive neuroscientists have sought to elucidate this issue by exploring the common neural basis of the experience of beauty. Still, empirical evidence for such common neural basis of different forms of beauty is not conclusive. To address this question, we performed an activation likelihood estimation (ALE) meta-analysis on the existing neuroimaging studies of beauty appreciation of faces and visual art by non-expert adults (49 studies, 982 participants, meta-data are available at https://osf.io/s9xds/). We observed that perceiving these two forms of beauty activated distinct brain regions: while the beauty of faces convergently activated the left ventral striatum, the beauty of visual art convergently activated the anterior medial prefrontal cortex (aMPFC). However, a conjunction analysis failed to reveal any common brain regions for the beauty of visual art and faces. The implications of these results are discussed.


2017 ◽  
Author(s):  
Cameron Parro ◽  
Matthew L Dixon ◽  
Kalina Christoff

AbstractCognitive control mechanisms support the deliberate regulation of thought and behavior based on current goals. Recent work suggests that motivational incentives improve cognitive control, and has begun to elucidate the brain regions that may support this effect. Here, we conducted a quantitative meta-analysis of neuroimaging studies of motivated cognitive control using activation likelihood estimation (ALE) and Neurosynth in order to delineate the brain regions that are consistently activated across studies. The analysis included functional neuroimaging studies that investigated changes in brain activation during cognitive control tasks when reward incentives were present versus absent. The ALE analysis revealed consistent recruitment in regions associated with the frontoparietal control network including the inferior frontal sulcus (IFS) and intraparietal sulcus (IPS), as well as consistent recruitment in regions associated with the salience network including the anterior insula and anterior mid-cingulate cortex (aMCC). A large-scale exploratory meta-analysis using Neurosynth replicated the ALE results, and also identified the caudate nucleus, nucleus accumbens, medial thalamus, inferior frontal junction/premotor cortex (IFJ/PMC), and hippocampus. Finally, we conducted separate ALE analyses to compare recruitment during cue and target periods, which tap into proactive engagement of rule-outcome associations, and the mobilization of appropriate viscero-motor states to execute a response, respectively. We found that largely distinct sets of brain regions are recruited during cue and target periods. Altogether, these findings suggest that flexible interactions between frontoparietal, salience, and dopaminergic midbrain-striatal networks may allow control demands to be precisely tailored based on expected value.


2005 ◽  
Vol 187 (6) ◽  
pp. 500-509 ◽  
Author(s):  
Amélie M. Achim ◽  
Martin Lepage

BackgroundNumerous studies have examined the neural correlates of episodic memory deficits in schizophrenia, yielding both consistencies and discrepancies in the reported patterns of results.AimsTo identify in schizophrenia the brain regions in which activity is consistently abnormal across imaging studies of memory.MethodData from 18 studies meeting the inclusion criteria were combined using a recently developed quantitative meta-analytic approach.ResultsRegions of consistent differential activation between groups were observed in the left inferior prefrontal cortex, medial temporal cortex bilaterally, left cerebellum, and in other prefrontal and temporal lobe regions. Subsequent analyses explored memory encoding and retrieval separately and identified between-group differences in specific prefrontal and medial temporal lobe regions.ConclusionsBeneath the apparent heterogeneity of published findings on schizophrenia and memory, a consistent and robust pattern of group differences is observed as a function of memory processes.


2020 ◽  
Vol 34 (05) ◽  
pp. 9201-9208
Author(s):  
Shaonan Wang ◽  
Jiajun Zhang ◽  
Nan Lin ◽  
Chengqing Zong

The relation between semantics and syntax and where they are represented in the neural level has been extensively debated in neurosciences. Existing methods use manually designed stimuli to distinguish semantic and syntactic information in a sentence that may not generalize beyond the experimental setting. This paper proposes an alternative framework to study the brain representation of semantics and syntax. Specifically, we embed the highly-controlled stimuli as objective functions in learning sentence representations and propose a disentangled feature representation model (DFRM) to extract semantic and syntactic information in sentences. This model can generate one semantic and one syntactic vector for each sentence. Then we associate these disentangled feature vectors with brain imaging data to explore brain representation of semantics and syntax. Results have shown that semantic feature is represented more robustly than syntactic feature across the brain including the default-mode, frontoparietal, visual networks, etc.. The brain representations of semantics and syntax are largely overlapped, but there are brain regions only sensitive to one of them. For instance, several frontal and temporal regions are specific to the semantic feature; parts of the right superior frontal and right inferior parietal gyrus are specific to the syntactic feature.


2011 ◽  
Vol 105 (5) ◽  
pp. 2438-2447 ◽  
Author(s):  
Jale Özyurt ◽  
Mark W. Greenlee

To examine the neural correlates of contextually differing control mechanisms in saccade initiation, we studied 18 subjects who performed two saccade paradigms in a pseudo-random order, while their eye movements were recorded in the MRI scanner (1.5 T). In the gap task the fixation point was extinguished 200 ms before target onset, and in the overlap task the fixation point vanished 500 ms after target onset. Subjects were asked to maintain stable fixation in the fixation period and to quickly saccade to peripherally presented targets. Inter-individual activation differences were assessed using regression analyses at the second level, with mean saccadic reaction time (SRT) of subjects as a covariate. To identify brain regions varying with trial-by-trial changes in SRTs, we included SRTs as a parametric modulation regressor in the general linear model. All analyses were regions of interest based and were performed separately for the gap and overlap conditions. For the gap paradigm, we did not obtain activation in regions previously shown to be involved in preparatory processes with much longer gap periods. Interestingly, both inter- and intra-individual variability analyses revealed a positive correlation of activation in frontal and parietal eye-movement regions with SRTs, indicating that slower saccade performance is possibly associated with higher cortical control. For the overlap paradigm, the trial-by-trial variability analysis revealed a positive correlation of activation in the right opercular inferior frontal gyrus with SRTs, possibly linked to fixation-related processes that have to be overcome to perform a speeded saccade in presence of a fixation point.


Sign in / Sign up

Export Citation Format

Share Document