scholarly journals Seismic Behavior of RC Bridge Piers Locally Replaced with SFRC-FA Subjected to Torsion Combined with Axial Compression

2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Jiyang Wang ◽  
Yongjun Wang ◽  
Chenglin Wan ◽  
Rongda Chen ◽  
Chengbin Liu ◽  
...  

Under complex seismic forces, the failure characteristics of the plastic hinge region at the bottom of the pier column and the methods improving the ductility have attracted extensive attention. In this study, steel fiber-reinforced concrete with fine aggregate (SFRC-FA) was applied to locally replace the conventional concrete in the potential plastic hinge region at the bottom of the pier column. Five SFRC-FA pier column specimens with different stirrup ratios and different replacement lengths and one conventional reinforced concrete pier column specimen were produced. Using the seismic behavior tests under the combined bending-shear-torsion-axial force, the failure mode, torsional bearing capacity, energy dissipation, and the torsional plastic hinges of the pier columns were investigated. In addition, an equation for calculating the torsional bearing capacity of the new composite pier columns was proposed. The results showed that (1) compared with the reinforced concrete pier column, the plastic hinge was shifted from the bottom of the pier column to the middle of the height of the pier column due to the application of SFRC-FA at the bottom of the pier column, which improved the torsional bearing capacity; (2) the effect of reducing the stirrup ratio of the SFRC-FA replacement region on the torsional bearing capacity, cracking mode, energy dissipation, and ductility was not obvious; (3) the accuracy of the new equation based on the space truss model proposed in this article was verified by comparison with the experiments of this study and other researches.

2012 ◽  
Vol 178-181 ◽  
pp. 2228-2235 ◽  
Author(s):  
Yu Ye Zhang ◽  
Hong Yi Wei ◽  
Wan Cheng Yuan ◽  
Wei Hu

Steel fiber reinforced concrete (SFRC) has many good dynamic performances such as toughness and ductility. However, few studies have focused on SFRC’s application in bearing member of bridge structures. In this paper, pseudo-static cyclic tests of eight pier specimens are carried out to investigate seismic behavior of piers using SFRC. The main variables in the testing are the steel fiber content (volume fraction of 0.0%, 0.5%, 1.0% and 1.5%), the length of SFRC region and the stirrup ratio of piers. Seismic behavior of the test specimens, like the failure pattern, the hysteretic characteristics, the skeleton curves, the ductility and the energy dissipation are investigated experimentally. The results show that, 1) the SFRC pier with the steel fiber volume fraction of 1.0% has much better performance than that with other fiber volume contents, particularly for bearing capacity, hysteretic energy dissipation and ductility; 2) the pier specimen can keep sufficient seismic capacity, in which some stirrups are replaced by steel fibers; and 3) compared with specimen with application of SFRC in entire pier, the specimen with appropriate local application of SFRC in potential plastic hinge region can sustain almost the same seismic properties, such as the ultimate bearing capacity, the stiffness, the ductility and the energy dissipation capacity.


2013 ◽  
Vol 747 ◽  
pp. 773-776 ◽  
Author(s):  
Rodsin Kittipoom ◽  
Sappakittipakorn Manote ◽  
Sukontasukkul Piti

The principal aim of this research is to improve the seismic performance of non-ductile reinforced columns using fiber reinforced concrete (FRC) by mixing steel fiber into the concrete. Two reinforced concrete columns 200mm x 300mm in cross-section with a height of 1250 mm were tested under cyclic lateral loading. The first specimen was casted using normal strength concrete of 24 MPa and the second specimens were also casted using similar concrete with similar strength but the steel fiber of 1% was added to the concrete in the plastic hinge region. The axial load for all specimens was 300 kN and kept constant during the test. The test results showed that the use of FRC in the plastic hinge region could significantly improve column displacement ductility. The maximum drift at lateral strength loss at 3.7% for non-ductile column could increase to 6% in FRC column. It is evident that the cracks in FRC column are much smaller and more widely spread in the plastic hinge region and hence the plastic hinge could be able to rotate without lateral strength being compromised. In FRC column, concrete spalling was observed in a very high drift (5%) and bar buckling occurred at around 6% drift whilst in non-ductile column concrete spalling and bar buckling occurred at 2.5% and 3% drift respectively. It was evident that the use of steel fiber in non-ductile columns could significantly improve seismic performance of the column.


Materials ◽  
2019 ◽  
Vol 12 (17) ◽  
pp. 2716 ◽  
Author(s):  
Shiming Liu ◽  
Xinxin Ding ◽  
Xiaoke Li ◽  
Yongjian Liu ◽  
Shunbo Zhao

This paper studies the effect of high-strength steel fiber reinforced concrete (SFRC) on the axial compression behavior of rectangular-sectional SFRC-filled steel tube columns. The purpose is to improve the integrated bearing capacity of these composite columns. Nine rectangular-sectional SFRC-filled steel tube columns and one normal concrete-filled steel tube column were designed and tested under axial loading to failure. The compressive strength of concrete, the volume fraction of steel fiber, the type of internal longitudinal stiffener and the spacing of circular holes in perfobond rib were considered as the main parameters. The failure modes, axial load-deformation curves, energy dissipation capacity, axial bearing capacity, and ductility index are presented. The results identified that steel fiber delayed the local buckling of steel tube and increased the ductility and energy dissipation capacity of the columns when the volume fraction of steel fiber was not less than 0.8%. The longitudinal internal stiffening ribs and their type changed the failure modes of the local buckling of steel tube, and perfobond ribs increased the ductility and energy dissipation capacity to some degree. The compressive strength of SFRC failed to change the failure modes, but had a significant impact on the energy dissipation capacity, bearing capacity, and ductility. The predictive formulas for the bearing capacity and ductility index of rectangular-sectional SFRC-filled steel tube columns are proposed to be used in engineering practice.


Materials ◽  
2020 ◽  
Vol 13 (2) ◽  
pp. 392 ◽  
Author(s):  
Jacek Domski ◽  
Mateusz Zakrzewski

The article describes the selected methods of calculating the deflection of steel fiber reinforced concrete beams. Additionally, the results of the study on the deflection of steel fiber reinforced concrete beams based on waste sand are presented. This paper compares deflections measured during the four point bending test of the steel fiber reinforced, waste sand fine aggregate concrete beam with values determined in accordance with Eurocode 2, the proposal of Tan, Paramasivam, and Tan, the modified method of Alsayed, Bywalski, and Kaminski, and Amin, Foster, and Kaufmann’s method. The analysis conducted shows that the best accordance with the study and calculation results was obtained by using the modified Alsayed method.


2014 ◽  
Vol 931-932 ◽  
pp. 463-467
Author(s):  
Kittipoom Rodsin

The principal aim of this research is to improve the seismic performance of high strength concrete (HSC) reinforced columns using fiber reinforced concrete (FRC) by mixing steel fiber into the concrete. Two reinforced concrete columns 200mm x 300mm in cross-section with a height of 1250 mm were tested under cyclic lateral loading. The first specimen was casted using high strength concrete of 100 MPa and the second specimens were also casted using similar concrete strength but the steel fiber of 0.5% by volume was added to the concrete in the plastic hinge region. Both columns were subjected to lateral cyclic load until the failure occurs. The test results showed that the use of FRC in the plastic hinge region could significantly improve column displacement ductility. The maximum drift at column failure at 4.5% for non-ductile column could increase to 8% in FRC column. It is evident that the cracks in FRC column are much smaller properly spread in the plastic hinge region and hence the plastic hinge could be able to rotate without lateral strength being compromised. In FRC column, concrete spalling was observed in a very high drift (7%) and bar buckling occurred at around 8% drift whilst in HSC column concrete spalling and bar buckling occurred at only 3.5% and 4% drift respectively. It was evident that the use of steel fiber in HSC columns could significantly improve seismic performance of the column.


Sign in / Sign up

Export Citation Format

Share Document