scholarly journals Overlapping Decentralized Control Strategies of Building Structures’ Vibration with Time Delay Based on H∞ Control Algorithms under Seismic Excitation

2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Xiaofang Kang ◽  
Jian Wu ◽  
Yewei Zhang ◽  
Guoliang Liu ◽  
Suhui Zhang ◽  
...  

A decentralized control strategy can effectively solve the control problem of the large-scale time delayed structures. In this paper, combining the overlapping decentralized control method, linear matrix inequality (LMI) method, and H∞ control algorithm, overlapping decentralized H∞ control approach of the time delayed structures has been established. The feedback gain matrixes of all subsystems are obtained by this method based on genetic algorithm optimization tools and the specific goal of optimization control. The whole vibration control system of the time delayed structures is divided into a series of overlapping subsystems by overlapping decentralized control strategy. The feedback gain matrixes of each subsystem can be obtained by using H∞ control algorithm to calculate each subsystem. The vibration control of a twenty layers’ antiseismic steel structure Benchmark model was analyzed with the numerical method. The results show that the proposed method can be applied to control system with time delay. The overlapping decentralized control strategies acquire the similar control effects with that of the centralized control strategy. Moreover, the flexibility of the controller design has been enhanced by using overlapping decentralized control strategies.

2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Xiaofang Kang ◽  
Peipei Zhang ◽  
Yiwei Zhang ◽  
Dawei Man ◽  
Qinghu Xu ◽  
...  

A decentralized control scheme can effectively solve the control problem of civil engineering structure vibration under earthquake. This paper takes a research into the decentralized control scheme of adjacent buildings when the earthquake happens. It combines overlapping decentralized control method and linear matrix inequality (LMI) with H ∞ control algorithm and puts forward the overlapping decentralized H ∞ control method. A simplified dynamical model of structural vibration control has been established considering the topology structural features of adjacent buildings. The H ∞ control algorithm is applied into each dynamically different subsystems and can be also served as the decentralized H ∞ controllers. Therefore, by contracting decentralized H ∞ controllers to original state space, overlapping decentralized H ∞ controllers are obtained. In this manner, the adjacent buildings’ structure model is analyzed in terms of simulation and calculation which provides a comprehensive insight into vibration control. The results show that the centralized control, the decentralized control, and the overlapping decentralized control, based on linear matrix inequality, can be nearly effective in cases above satisfactorily. Besides, it can also reduce the computational cost as well as increase the flexibility of controller design.


Author(s):  
Ahmad F. Taha ◽  
Ahmed Elmahdi ◽  
Jitesh H. Panchal ◽  
Dengfeng Sun

The network disturbance effect can be considered as either a perturbation or as a pure time delay for the exchanged signals. The network-induced time delay is one of the main challenges when a network is inserted in the feedback loops of a control system. In this paper, our objective is to improve the behavior of a Networked Control System (NCS) by analyzing the time-delay given that the decentralized control design method is adopted. First, we review an observer-based control method for decentralized control systems. Second, we establish a map between the decentralized non-networked system, and the typical NCS state-space representation. The main idea the mapping is to put the Decentralized Networked Control System (DNCS) in a general form and then map the resulting system to the typical NCS form. Third, we derive the global dynamics of the DNCS. Fourth, an upper bound for the time-delay is derived that guarantees the stability of LTI DNCSs. Finally, we present a numerical example that illustrates the applicability of the derived bound.


2019 ◽  
Vol 9 (22) ◽  
pp. 4811 ◽  
Author(s):  
Dong He ◽  
Qingyu Xiong ◽  
Xuyang Zhang ◽  
Yunchuang Dai ◽  
Ziyan Jiang

This paper presents a novel control system for chiller plants that is decentralized and flat-structured. Each device in chiller plant system is fitted with a smart node. It is a smart agent, which collects, handles and sends out information to its neighbours. All the smart nodes form a network that can realize self-organization and self-recognition. Different kinds of control strategies can be converted into series of decentralized computing processes carried on by the smart nodes. The principle and mechanism of this decentralized, flat-structured control system for chiller plants are described in detail. Then a case study is presented to show how to build the decentralized, flat-structured control system actually. The measured data shows that the decentralized control method is energy efficiency. Moreover, it is much more flexible and scalable compared with the traditional centralized control method.


2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Shiqing Sang ◽  
Pengcheng Nie

In this paper, a new type of modified Smith predictor based on the H 2 and predictive PI control strategy is proposed. The modified Smith predictor not only has H 2 robust performance but also has a similar predictive PI control structure. By introducing a time delay term, the modified Smith predictor controller overcomes the shortcoming that the conventional control algorithm can only use the low-order approximation of time delay term to design the control algorithm. The modified Smith predictor controller’s output is related to the current system error and related to the output in a period before the controller. Simultaneously, the modified Smith predictor controller is applied to conventional process systems based on dynamic optimization estimation in the case study to show absolute superiority over the nonpredictive control method (such as the classical PID control method).


2022 ◽  
Vol 2022 ◽  
pp. 1-13
Author(s):  
Xiaofang Kang ◽  
Shuai Li ◽  
Guanghui Xia ◽  
Qinghu Xu ◽  
Dawei Man ◽  
...  

The vibration control system of a building structure under a strong earthquake can be regarded as a large complex system composed of a series of overlapping subsystems. In this paper, the overlapping decentralized control of building structure vibration under seismic excitation is studied. Combining the overlapping decentralized control method, H∞ control algorithm, and passive fault-tolerant control method, a passive fault-tolerant overlapping decentralized control method based on the H∞ control algorithm is proposed. In this paper, the design of robust H∞ finite frequency passive fault-tolerant static output feedback controller for each subsystem is studied. The fault matrix of the subcontroller is expressed by a polyhedron with finite vertices. In order to reduce the influence of external disturbance on the controlled output, the finite frequency H∞ control is adopted and the Hamiltonian matrix is avoided. In this paper, the passive fault-tolerant overlapping decentralized control method based on H∞ control algorithm is applied to the vibration control system of the four-story building structure excited by the Hachinohe seismic wave. One drive is set on each layer of the structure, and a total of four drives are set. Select the driver fault factor of 0.5 or 1 and the frequency band [0.3, 8] Hz. The overlapping decentralized control scheme and 16 fault-tolerant fault matrices are designed, and the numerical comparison results are given. The results show that both overlapping decentralized control strategy and multioverlapping decentralized control strategy have achieved good control results. Due to the different number of subsystems and overlapping information, the overlapping decentralized control scheme increases the flexibility of controller setting and reduces the computational cost.


2018 ◽  
Vol 10 (12) ◽  
pp. 168781401881675
Author(s):  
Cong Cong

This article is devoted to the study of the vibration control for blades and tower in a wind turbine. Based on the Euler–Lagrangian method, a multi-body dynamic model including three blades with distributed parameter, tower, and their coupling is obtained. Multi active tuned mass dampers have been utilizing as damping devices. Therefore, the dynamics of the tuned mass dampers are also considered in modeling. The influence of extreme wind, and grid dynamics on the vibration of the blade was analyzed. Moreover, the nonlinearity induced by space constraints, which impact on vibration control, is introduced. For active control, the constrained decentralized control strategy is designed via linear matrix inequality which tuned mass dampers stroke constraints are modeled as hard constraints. A doubly fed induction generator connected to an infinite bus including the detailed electrical and structural model was performed on MATLAB/Simulink. Simulation results show that the control strategy can effectively reduce the vibration of the blade while the damper stroke satisfies the working space permitted by the blade. Investigations demonstrate promising results for decentralized constrained control in simultaneous control blade vibrations and tower vibrations. Each actuator is driven separately from the output of the corresponding sensor so that only local feedback control is achieved; this improves the system reliability.


Machines ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 67
Author(s):  
Laixi Zhang ◽  
Chenming Zhao ◽  
Feng Qian ◽  
Jaspreet Singh Dhupia ◽  
Mingliang Wu

Vibrations in the aircraft assembly building will affect the precision of the robotic drilling system. A variable stiffness and damping semiactive vibration control mechanism with quasi-zero stiffness characteristics is developed. The quasi-zero stiffness of the mechanism is realized by the parallel connection of four vertically arranged bearing springs and two symmetrical horizontally arranged negative stiffness elements. Firstly, the quasi-zero stiffness parameters of the mechanism at the static equilibrium position are obtained through analysis. Secondly, the harmonic balance method is used to deal with the differential equations of motion. The effects of every parameter on the displacement transmissibility are analyzed, and the variable parameter control strategies are proposed. Finally, the system responses of the passive and semiactive vibration isolation mechanisms to the segmental variable frequency excitations are compared through virtual prototype experiments. The results show that the frequency range of vibration isolation is widened, and the stability of the vibration control system is effectively improved without resonance through the semiactive vibration control method. It is of innovative significance for ambient vibration control in robotic drilling systems.


2014 ◽  
Vol 525 ◽  
pp. 646-652
Author(s):  
Min Bian ◽  
Qing Yun Guo

The robust H2/<em>H</em>∞ control strategy for a class of linear continuous-time uncertain systems with randomly jumping parameters is investigated. The transition of the jumping parameters is decided by a finite-state Markov process. The uncertainties are supposed to be norm-bounded. It is desired to design a linear state feedback control strategies such that the closed-loop system satisfies H performance and minimizes the H2 norm of the system. A sufficient condition is first established on the existence of the robust H2/<em>H</em>∞controller bases on the bounded real lemma. Then the corresponding state-feedback law is given in terms of a set of linear matrix inequalities (LMIs). It is showed that this condition is equivalent to the feasible solutions problem of LMI. Furthermore, the control strategy design problem is converted into a convex optimization problem subject to LMI constraints, which can be easily solved by standard numerical software.


2014 ◽  
Vol 1006-1007 ◽  
pp. 575-580
Author(s):  
Qing Xie Chen ◽  
Jing Jing Chen ◽  
Yi Biao Fan

Targeting development of control system of a permanent magnet synchronous motor applied to high precision requirement, A strategy is researched to develop a single chip with built-in sensor-less control algorithm which is used as the control core of PMSM control system, the composition of the hardware and the realization of software of the chip are designed, and the simulation experiment is carried out to verify feasibility and rationality of the control strategy as well.


Sign in / Sign up

Export Citation Format

Share Document