scholarly journals Deep Learning Structure for Cross-Domain Sentiment Classification Based on Improved Cross Entropy and Weight

2020 ◽  
Vol 2020 ◽  
pp. 1-20
Author(s):  
Rong Fei ◽  
Quanzhu Yao ◽  
Yuanbo Zhu ◽  
Qingzheng Xu ◽  
Aimin Li ◽  
...  

Within the sentiment classification field, the convolutional neural network (CNN) and long short-term memory (LSTM) are praised for their classification and prediction performance, but their accuracy, loss rate, and time are not ideal. To this purpose, a deep learning structure combining the improved cross entropy and weight for word is proposed for solving cross-domain sentiment classification, which focuses on achieving better text sentiment classification by optimizing and improving recurrent neural network (RNN) and CNN. Firstly, we use the idea of hinge loss function (hinge loss) and the triplet loss function (triplet loss) to improve the cross entropy loss. The improved cross entropy loss function is combined with the CNN model and LSTM network which are tested in the two classification problems. Then, the LSTM binary-optimize (LSTM-BO) model and CNN binary-optimize (CNN-BO) model are proposed, which are more effective in fitting the predicted errors and preventing overfitting. Finally, considering the characteristics of the processing text of the recurrent neural network, the influence of input words for the final classification is analysed, which can obtain the importance of each word to the classification results. The experiment results show that within the same time, the proposed weight-recurrent neural network (W-RNN) model gives higher weight to words with stronger emotional tendency to reduce the loss of emotional information, which improves the accuracy of classification.

2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Shanshan Dong ◽  
Chang Liu

Sentiment classification for financial texts is of great importance for predicting stock markets and financial crises. At present, with the popularity of applications in the field of natural language processing (NLP) adopting deep learning, the application of automatic text classification and text-based sentiment classification has become more and more extensive. However, in the field of financial text-based sentiment classification, due to a lack of labeled samples, such applications are limited. A domain-adaptation-based financial text sentiment classification method is proposed in this paper, which can adopt source domain (SD) text data with sentiment labels and a large amount of unlabeled target domain (TD) financial text data as training samples for the proposed neural network. The proposed method is a cross-domain transfer-learning-based method. The domain classification subnetwork is added to the original neural network, and the domain classification loss function is also added to the original training loss function. Therefore, the network can simultaneously adapt to the target domain and then accomplish the classification task. The experiment of the proposed sentiment classification transfer learning method is carried out through an open-source dataset. The proposed method in this paper uses the reviews of Amazon Books, DVDs, electronics, and kitchen appliances as the source domain for cross-domain learning, and the classification accuracy rates can reach 65.0%, 61.2%, 61.6%, and 66.3%, respectively. Compared with nontransfer learning, the classification accuracy rate has improved by 11.0%, 7.6%, 11.4%, and 13.4%, respectively.


IEEE Access ◽  
2019 ◽  
Vol 7 ◽  
pp. 146331-146341 ◽  
Author(s):  
Yangfan Zhou ◽  
Xin Wang ◽  
Mingchuan Zhang ◽  
Junlong Zhu ◽  
Ruijuan Zheng ◽  
...  

Author(s):  
Gabriel Zaid ◽  
Lilian Bossuet ◽  
François Dassance ◽  
Amaury Habrard ◽  
Alexandre Venelli

The side-channel community recently investigated a new approach, based on deep learning, to significantly improve profiled attacks against embedded systems. Compared to template attacks, deep learning techniques can deal with protected implementations, such as masking or desynchronization, without substantial preprocessing. However, important issues are still open. One challenging problem is to adapt the methods classically used in the machine learning field (e.g. loss function, performance metrics) to the specific side-channel context in order to obtain optimal results. We propose a new loss function derived from the learning to rank approach that helps preventing approximation and estimation errors, induced by the classical cross-entropy loss. We theoretically demonstrate that this new function, called Ranking Loss (RkL), maximizes the success rate by minimizing the ranking error of the secret key in comparison with all other hypotheses. The resulting model converges towards the optimal distinguisher when considering the mutual information between the secret and the leakage. Consequently, the approximation error is prevented. Furthermore, the estimation error, induced by the cross-entropy, is reduced by up to 23%. When the ranking loss is used, the convergence towards the best solution is up to 23% faster than a model using the cross-entropy loss function. We validate our theoretical propositions on public datasets.


India is an agricultural country, and rainfall is the main source of irrigation for agriculture. Prediction of rainfall is very crucial for farmers to make decisions. In this research paper, the prediction model has been developed through deep learning using historical data of 10 years of rainfall. A deep learning approach used Keras API with an artificial neural network technique to predict the daily rainfall. The prediction model has been assessed by four-loss function, i.e., MSE, MAE, Hinge, and Binary Cross-Entropy.


2019 ◽  
Vol 18 (05) ◽  
pp. 1469-1499 ◽  
Author(s):  
Paola Zola ◽  
Paulo Cortez ◽  
Costantino Ragno ◽  
Eugenio Brentari

Due to the expansion of Internet and Web 2.0 phenomenon, there is a growing interest in sentiment analysis of freely opinionated text. In this paper, we propose a novel cross-source cross-domain sentiment classification, in which cross-domain-labeled Web sources (Amazon and Tripadvisor) are used to train supervised learning models (including two deep learning algorithms) that are tested on typically nonlabeled social media reviews (Facebook and Twitter). We explored a three-step methodology, in which distinct balanced training, text preprocessing and machine learning methods were tested, using two languages: English and Italian. The best results were achieved using undersampling training and a Convolutional Neural Network. Interesting cross-source classification performances were achieved, in particular when using Amazon and Tripadvisor reviews to train a model that is tested on Facebook data for both English and Italian.


2020 ◽  
Vol 13 (4) ◽  
pp. 627-640 ◽  
Author(s):  
Avinash Chandra Pandey ◽  
Dharmveer Singh Rajpoot

Background: Sentiment analysis is a contextual mining of text which determines viewpoint of users with respect to some sentimental topics commonly present at social networking websites. Twitter is one of the social sites where people express their opinion about any topic in the form of tweets. These tweets can be examined using various sentiment classification methods to find the opinion of users. Traditional sentiment analysis methods use manually extracted features for opinion classification. The manual feature extraction process is a complicated task since it requires predefined sentiment lexicons. On the other hand, deep learning methods automatically extract relevant features from data hence; they provide better performance and richer representation competency than the traditional methods. Objective: The main aim of this paper is to enhance the sentiment classification accuracy and to reduce the computational cost. Method: To achieve the objective, a hybrid deep learning model, based on convolution neural network and bi-directional long-short term memory neural network has been introduced. Results: The proposed sentiment classification method achieves the highest accuracy for the most of the datasets. Further, from the statistical analysis efficacy of the proposed method has been validated. Conclusion: Sentiment classification accuracy can be improved by creating veracious hybrid models. Moreover, performance can also be enhanced by tuning the hyper parameters of deep leaning models.


Sensors ◽  
2021 ◽  
Vol 21 (15) ◽  
pp. 4953
Author(s):  
Sara Al-Emadi ◽  
Abdulla Al-Ali ◽  
Abdulaziz Al-Ali

Drones are becoming increasingly popular not only for recreational purposes but in day-to-day applications in engineering, medicine, logistics, security and others. In addition to their useful applications, an alarming concern in regard to the physical infrastructure security, safety and privacy has arisen due to the potential of their use in malicious activities. To address this problem, we propose a novel solution that automates the drone detection and identification processes using a drone’s acoustic features with different deep learning algorithms. However, the lack of acoustic drone datasets hinders the ability to implement an effective solution. In this paper, we aim to fill this gap by introducing a hybrid drone acoustic dataset composed of recorded drone audio clips and artificially generated drone audio samples using a state-of-the-art deep learning technique known as the Generative Adversarial Network. Furthermore, we examine the effectiveness of using drone audio with different deep learning algorithms, namely, the Convolutional Neural Network, the Recurrent Neural Network and the Convolutional Recurrent Neural Network in drone detection and identification. Moreover, we investigate the impact of our proposed hybrid dataset in drone detection. Our findings prove the advantage of using deep learning techniques for drone detection and identification while confirming our hypothesis on the benefits of using the Generative Adversarial Networks to generate real-like drone audio clips with an aim of enhancing the detection of new and unfamiliar drones.


Electronics ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 81
Author(s):  
Jianbin Xiong ◽  
Dezheng Yu ◽  
Shuangyin Liu ◽  
Lei Shu ◽  
Xiaochan Wang ◽  
...  

Plant phenotypic image recognition (PPIR) is an important branch of smart agriculture. In recent years, deep learning has achieved significant breakthroughs in image recognition. Consequently, PPIR technology that is based on deep learning is becoming increasingly popular. First, this paper introduces the development and application of PPIR technology, followed by its classification and analysis. Second, it presents the theory of four types of deep learning methods and their applications in PPIR. These methods include the convolutional neural network, deep belief network, recurrent neural network, and stacked autoencoder, and they are applied to identify plant species, diagnose plant diseases, etc. Finally, the difficulties and challenges of deep learning in PPIR are discussed.


Sign in / Sign up

Export Citation Format

Share Document