scholarly journals Corrigendum to “Repurposing Napabucasin as an Antimicrobial Agent against Oral Streptococcal Biofilms”

2021 ◽  
Vol 2021 ◽  
pp. 1-2
Author(s):  
Xinyi Kuang ◽  
Tao Yang ◽  
Chenzi Zhang ◽  
Xian Peng ◽  
Yuan Ju ◽  
...  
Keyword(s):  

2018 ◽  
Vol 28 (2) ◽  
pp. 429-432
Author(s):  
Dilyana Zvezdova

Chitosan, a hydrophilic biopolymer industrially obtained by N-deacetylation of chitin, can be applied as an antimicrobial agent. It highlights the applications of chitosan as an antimicrobial agent against fungi, bacteria, and viruses and as an elicitor of plant defense mechanisms. A series of novel chitosan-sulfathiazole nanocomposite (CSFZ) films were prepared by using solvent casting method for wound healing application. Fourier transform infrared spectroscopy (FTIR) was employed to ascertain the interaction between negatively charged sulfathiazole and positively charged chitosan. Moreover, the antibacterial activity of the films was investigated against gram positive and gram negative microorganisms. It was found that all CSFZ films showed good inhibitory activity against all the tested bacteria as compared to control. The above analysis suggested that the CSFZ films could be used as potential candidates for wound healing application.


2013 ◽  
Vol 10 (5) ◽  
pp. 437-443
Author(s):  
Ramar Perumal Samy ◽  
Gautam Sethi ◽  
Vincent T.K Chow

Author(s):  
E. Vidhya ◽  
S. Vijayakumar ◽  
M. Nilavukkarasi ◽  
V.N. Punitha ◽  
S. Snega ◽  
...  

2021 ◽  
Author(s):  
Gloria M. Castañeda‐Ruelas ◽  
R. Karely Ibarra‐Medina ◽  
Guillermo Niño‐Medina ◽  
Saraid Mora‐Rochín ◽  
Julio Montes‐Ávila ◽  
...  

Author(s):  
Djihane Bouzid ◽  
Samir Merzouki ◽  
Habiba Boukhebti ◽  
Mouhamed Mihoub Zerroug

RSC Advances ◽  
2021 ◽  
Vol 11 (24) ◽  
pp. 14746-14754
Author(s):  
Yaoguang Guo ◽  
Zhiyuan Liu ◽  
Xiaoyi Lou ◽  
Changling Fang ◽  
Pu Wang ◽  
...  

A systematic study for degradation kinetics and transformation mechanism of sulfacetamide antibiotic, and the potential formation of H-DBPs represented by HAAs in the chlorination process is explored.


Polymers ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 2454
Author(s):  
Sevakumaran Vigneswari ◽  
Tana Poorani Gurusamy ◽  
Wan M. Khairul ◽  
Abdul Khalil H.P.S. ◽  
Seeram Ramakrishna ◽  
...  

Poly(3-hydroxybutyrate-co-4-hydroxybutyrate) [P(3HB-co-4HB)] is a bacterial derived biopolymer widely known for its unique physical and mechanical properties to be used in biomedical application. In this study, antimicrobial agent silver sulfadiazine (SSD) coat/collagen peptide coat-P(3HB-co-4HB) (SCCC) and SSD blend/collagen peptide coat-P(3HB-co-4HB) scaffolds (SBCC) were fabricated using a green salt leaching technique combined with freeze-drying. This was then followed by the incorporation of collagen peptides at various concentrations (2.5–12.5 wt.%) to P(3HB-co-4HB) using collagen-coating. As a result, two types of P(3HB-co-4HB) scaffolds were fabricated, including SCCC and SBCC scaffolds. The increasing concentrations of collagen peptides from 2.5 wt.% to 12.5 wt.% exhibited a decline in their porosity. The wettability and hydrophilicity increased as the concentration of collagen peptides in the scaffolds increased. In terms of the cytotoxic results, MTS assay demonstrated the L929 fibroblast scaffolds adhered well to the fabricated scaffolds. The 10 wt.% collagen peptides coated SCCC and SBCC scaffolds displayed highest cell proliferation rate. The antimicrobial analysis of the fabricated scaffolds exhibited 100% inhibition towards various pathogenic microorganisms. However, the SCCC scaffold exhibited 100% inhibition between 12 and 24 h, but the SBCC scaffolds with SSD impregnated in the scaffold had controlled release of the antimicrobial agent. Thus, this study will elucidate the surface interface-cell interactions of the SSD-P(3HB-co-4HB)-collagen peptide scaffolds and controlled release of SSD, antimicrobial agent.


Sign in / Sign up

Export Citation Format

Share Document