maximum admissible concentration
Recently Published Documents


TOTAL DOCUMENTS

15
(FIVE YEARS 9)

H-INDEX

3
(FIVE YEARS 1)

2021 ◽  
Vol 16 (7) ◽  
pp. 1349-1357
Author(s):  
Majeed Mattar Ramal ◽  
Arkan Dhari Jalal ◽  
Uday Hatem Abdulhameed

This study goals to assess the concentrations of specified Heavy Metals (HMs) and quality of taps drinking water of Ramadi city, western Iraq. Heavy Metal Pollution Indices like heavy metal pollution index (HMPI ), heavy metal evaluation index (HMEI) and contamination degree (CD) were applied to assess the supplied water. The average concentrations of Lead (Pb), Nickel (Ni), Chromium (Cr), Arsenic (As) and Cadmium (Cd) in most stations exceed the maximum admissible concentration, while Iron (Fe) in most of stations was within the maximum admissible concentration according to local and global guidelines. (HMPI ) values of most stations were exceed the maximum critical value of 100. (HMEI) values of most stations were exceed the value of 10 recommended for drinking water. (CD) values of most stations were exceed the value of 1 recommended for drinking water. The pollution origins were assessed using principal component analysis (PCA) and clustering analysis (CA). The results indicate that contamination comes from anthropogenic causes being the most common and lithogenic sources being the least common. The present concentration of (HMs) in taps water is causing health and environmental problems, water with high (HMs) concentrations would need to be treated before being supplied to consumers.


Author(s):  
Skowron J ◽  
◽  
Zapór L ◽  
Miranowicz-Dzierzawska K ◽  
◽  
...  

The article discusses the principles of determining the maximum admissible concentration and intensity values for harmful agents present at workplaces as the basic criteria for ensuring safe and hygienic working conditions in Poland and in the European Union. The role of the Interdepartmental Commission for the Maximum Admissible Concentrations and Intensities of Agents Harmful to Health in the Working Environment is presented in this process. The attention was drawn to the relationship between the occupational health and safety legislation and the EC regulations on chemicals, which together provide both employers and the Member States with the necessary data and instruments to work safely with chemicals and to be able to take appropriate actions and risk management measures.


2020 ◽  
Vol 36 (1(103)) ◽  
pp. 113-125
Author(s):  
Anna Jeżewska ◽  
Agnieszka Woźnica

2-Nitroanisole is a colourless or slightly yellowish liquid. This substance is mainly used in the production of o-anisidine (2-methoxyaniline), which is directly or indirectly used for the production of more than 100 azo dyes. 2-Nitroanisole may cause cancer to humans. The aim of this study was to develop a method for determining concentrations of 2-nitroanisole in workplace air in the range from 1/10 to 2 of maximum admissible concentration (MAC) values. The developed method is based on the adsorption of 2-nitroanisole on a silica gel, extraction with methanol and chromatographic analysis of the resulting solution. The tests were performed using a liquid chromatograph (HPLC) 1200 series of Agilent Technologies with a diode array detector (DAD). Determinations were performed using an Ultra C18 column (25 cm × 4.6 mm, dp = 5 µm). The procedure was validated according to Standard No. EN 482. The method can be used to determine 2-nitroanisole in workplace air in the concentration range from 0.16 to 3.2 mg/m3, i.e., from 1/10 to 2 MAC values. In that range, the obtained calibration curve was linear, as evidenced by the regression coefficient of 1. The overall accuracy of the method was about 5.3% and its relative total uncertainty was 23%. This method enables selective determination of 2-nitroanisole in workplace air in the presence of other compounds, such as methanol, o-anisidine, 3-nitroanisole, 4-nitroanisole and 1-chloro-2-nitrobenzene. The method for determining 2-nitroanisole has been recorded in the form of an analytical procedure (see Appendix). This article discusses the problems of occupational safety and health, which are covered by health sciences and environmental engineering.


2019 ◽  
Vol 70 (10) ◽  
pp. 3549-3554
Author(s):  
Florica Marinescu ◽  
Mihaela Ilie ◽  
Gina Ghita ◽  
Ioana Savin ◽  
Carmen Tociu ◽  
...  

Twenty-two groundwater sources mainly used for drinking purpose in Bucharest peri-urban area were investigated for assessment of physico-chemical and microbiological quality with a view to determining its potential risk to public health. Results of chemical analysis revealed that nitrites, sulphates and chlorides were below the permissible levels, while 63.64% of the analysed groundwater sources exceeded the maximum admissible concentration for nitrates, with concentration variations ranging from 67.27 to 523.19 mg/L. The bacteriological analysis showed that in about 63% of groundwater sources total coliform, faecal coliform and enterococci have exceeded the threshold limits recommended by the Drinking Water Directive 98/83/EC and the Romanian Law. Another aim of the study was to investigate the prevalence of antibiotic resistance among Gram-negative strains isolated from groundwater sources. There observed the resistance to many antibiotics, particularly: ticarcillin (80%), aztreonam (29%), gentamicin (11%), imipenem (9%), ceftriaxone (9%), ceftazidime (3%) and ciprofloxacin (3%). Significant higher resistance rates were observed in strains isolated from shallow groundwater sources as compared with strains isolated from deep groundwater sources. Pseudomonas sp. (26%) isolates with multiple-drug resistance (MDR) were encountered. The results of the study revealed a bacteriological contamination and high levels of nitrate concentrations in most of the groundwater samples, which could pose an important risk to human health.


2019 ◽  
Vol 70 (10) ◽  
pp. 3549-3554

Twenty-two groundwater sources mainly used for drinking purpose in Bucharest peri-urban area were investigated for assessment of physico-chemical and microbiological quality with a view to determining its potential risk to public health. Results of chemical analysis revealed that nitrites, sulphates and chlorides were below the permissible levels, while 63.64% of the analysed groundwater sources exceeded the maximum admissible concentration for nitrates, with concentration variations ranging from 67.27 to 523.19 mg/L. The bacteriological analysis showed that in about 63% of groundwater sources total coliform, faecal coliform and enterococci have exceeded the threshold limits recommended by the Drinking Water Directive 98/83/EC and the Romanian Law. Another aim of the study was to investigate the prevalence of antibiotic resistance among Gram-negative strains isolated from groundwater sources. There observed the resistance to many antibiotics, particularly: ticarcillin (80%), aztreonam (29%), gentamicin (11%), imipenem (9%), ceftriaxone (9%), ceftazidime (3%) and ciprofloxacin (3%). Significant higher resistance rates were observed in strains isolated from shallow groundwater sources as compared with strains isolated from deep groundwater sources. Pseudomonas sp. (26%) isolates with multiple-drug resistance (MDR) were encountered. The results of the study revealed a bacteriological contamination and high levels of nitrate concentrations in most of the groundwater samples, which could pose an important risk to human health. Keywords: bacterial resistance, groundwater, antibiotics, nitrate, waterborne diseases


2019 ◽  
Vol 36 (2(100)) ◽  
pp. 133-153
Author(s):  
Andrzej Starek

2-Nitroanisole is a colorless to yellowish liquid poorly soluble in water. It is used primarily to o-anisidine and o-dinisidine synthesis, which are precursors of azo dyes. 2-Nitroanisole has harmonized classification in the European Union: Carc. 1B 4 – carcinogenic, 1B category; H350 – may cause cancer after exposure trough the respiratory tract or skin; Acute Tox. 4 – acute toxicity 4; H302 – it acts adversely after swallowing. Occupational exposure to this compound occurs during its production and application. In Poland in 2016 203 workers were exposed to 2-nitroanisole. No data on 2-nitroanisole toxicity in humans were found in the available literature. In rodents 2-nitroanisole did not demonstrate large toxicity after administration in a single dose. In these animals repeatedly treated with this compound an increase in parenchymatous organ weights, decrease in body weight and also methemoglobinemia and hemolytic anemia were observed. 2-Nitroanisole was mutagenic in bacterial tests, induced gene mutations, chromosomal aberrations and sister chromatid exchange, and also damaged DNA (positive commet test). In rodents 2-nitroanisole induced both preneoplastic and neoplastic alterations mainly in urinary bladder, kidneys, and large intestine. The maximum admissible concentration (MAC) value for 2-nitroanisole has been calculated on the basis of the results of a short term experiment performed on rats. The critical effects observed were an increase in both liver and spleen weight and hemolytic anemia. On the basis of the NOEL value at the level of 8 mg/kg bw./day and uncertainty factors of 36, a MAC value at the level of 1.6 mg/m3 was obtained. On basis of literature data urinary bladder cancer risk associated with 1.6 mg/m3 concentration of 2-nitroanisole and a lifetime occupational exposure (40 years) was calculated at 2 × 10-3, which may be recognized as acceptable risk. The MAC has ”Carc. 1B” notation (carcinogenic substance, 1B category).


2019 ◽  
Vol 36 (2(100)) ◽  
pp. 27-45
Author(s):  
Joanna Kowalska

3,3′-Dimethoxybenzidine (DMOB) is a substance classified to a group of carcinogens. The recommended maximum admissible concentration (MAC) value for this substance in workplace air is 0.2 mg/m3. The aim of this study was to develop and validate a sensitive method for the determination of 3,3′-dimethoxybenzidine concentrations in workplace air in the range from 1/10 to 2 MAC values, in accordance with the requirements of the standard PN-EN 482. The method consists in passing the air that contains DMOB through a sulfuric acid-treated glass fiber filters, washing out the substance settled on the filter, using water and solution of sodium hydroxide, liquid-liquid extraction with toluene, replacing dissolvent with acetonitrile and analyzing the obtained solution. Studies were performed using high-performance liquid chromatography (HPLC) technique. An Agilent Technologies (Germany) liquid chromatograph, series 1200, with a fluorescence detector (FLD) was used in the experiment. In the test, an Ultra C18 column of dimensions: 250 x 4.6 mm, with a precolumn of dimensions: 10 x 4.0 mm (Restek, USA) was applied. Method is linear within the working range 1.08 µg/ml do 21.60 µg/ml, which is equivalent to air concentrations from 0.02 to 0.4 mg/m3 for a 54-L air sample. The analytical method described in this paper allows for selective determination of 3,3’-dimethoxybenzidine in the workplace air in the presence of 1,4-phenylenediamine, benzidine, aniline, 3,3’-dimethylbenzidine, 2-nitrotoluene, 3,3’-dichlorobenzidine and azobenzene. The method is characterized by good precision and accuracy and meets the criteria for the performance of procedures for the measurement of chemical agents, listed in EN 482. The method may be used for the assessment of occupational exposure to 3,3’-dimethoxybenzidine and the associated risk to workers’ health. The developed method of determining 3,3’-dimethoxybenzidine has been recorded as an analytical procedure (see appendix). This article discusses the problems of occupational safety and health, which are covered by health sciences and environmental engineering.


Water ◽  
2019 ◽  
Vol 11 (6) ◽  
pp. 1211 ◽  
Author(s):  
Licia C. Pollicino ◽  
Marco Masetti ◽  
Stefania Stevenazzi ◽  
Loris Colombo ◽  
Luca Alberti

Contamination by chlorinated solvents is typically associated with point sources, which are able to release high concentrations and to generate well defined plumes. Nevertheless, in urban settings (especially in functional urban areas—FUAs), multiple-point sources are frequently present, consisting of a series of unidentifiable small sources clustered within large areas, generating a diffuse, anthropogenic contamination. This situation results in the coexistence of single plumes with higher contaminant concentrations, and larger areas where the concentration is lower but still higher than the maximum admissible concentration limits. This paper proposes a methodology devised to cope with the diffuse contamination by chlorinated solvents within shallow aquifers due to multiple-point sources in FUAs. The approach is based on a Bayesian model that helps to spatially evaluate the likelihood of having active multiple-point sources, and to relate their impact on the shallow aquifer to the hydrogeological features of the area. Moreover, the approach allows testing of the efficiency of the monitoring network to properly characterize the contamination in the aquifer. The consistency of the results of the analysis was also checked for the Milan FUA (Italy) by a comparison to a previous study, performed through an inverse numerical modelling approach within a Monte Carlo statistical framework to identify the areas with the highest likelihood to host potential multiple-point sources.


2019 ◽  
Vol 35 (1(99)) ◽  
pp. 77-87
Author(s):  
Danuta Koradecka ◽  
Jolanta Skowroń

In 2018 the Commission met at three sessions, during which 9 documentations for recommended exposure limits of chemical substances, were discussed. Moreover the Commission discussed on: a system for notifying entrepreneurs, employees and inspection bodies of proposals for new or verified binding values (for carcinogenic and mutagenic substances) or indicator values for harmful chemicals in the form of messages, rules for setting limit values for harmful to health chemicals in the working environment, a program to improve working conditions in copper mines of KGHM Polska Miedź SA. and the methodology for determining hygiene standards for active substances of cytostatics, taking into account the uncertainty factor "F". The Commission suggested to the Minister of Family, Labour and Social Policy the following changes in the list of MAC values: adaptation of the Polish list of maximum admissible concentration (MAC-NDS) to Directive 2019/130/EC of 31/1/2019 amending Directive 2004/37/EC on the protection of workers from the risks related to exposure to carcinogens or mutagens at work (these are: chloroethene, o-toluidine and 1,3-butadiene), adjusting the MAC-value for trimethylamine to the value included in the draft directive setting the fifth list of indicative occupational exposure limits, introducing changes in the list of the maximum admissible concentration of chemicals and dust harmful to health for the substances mentioned, introduce the following substances into the list of maximum admissible concentrations of chemical agents harmful to health: phenolphthalein (Carc. 1B), etoposide (Carc. 1B), fluorouracil (Muta. 1B, skin), 2-nitroanisole (Carc. 1B), N-nitrosodimethylamine (Carc. 1B). Four issues of the "Principles and Methods of Assessing the Working Environment" were published in 2018. The booklets included: 11 documentation of occupational exposure limit, 11 methods for the determination of chemical concentrations in the working environment, 4 articles, a report on the activities of the Interdepartmental Commission for MACs and MAIs in 2017 and the indexes of the documentations, methods and articles published between 2000-2018. Three sessions of the Commission are planned for 2019. MAC values for 10 chemicals substances will be discussed at these meetings. The Commission and the Group of Experts will continue to work on adapting the Polish list of the maximum admissible concentrations to: proposals for binding values for carcinogenic or mutagenic substances, proposed concentration limit values developed by the Committee for Risk Assessment (RAC) and work carried out at SCOEL.


2018 ◽  
Vol 22 (1) ◽  
pp. 105-125
Author(s):  
Waclaw Romaniuk ◽  
Victor Polishchuk ◽  
Andrzej Marczuk ◽  
Liudmyla Titova ◽  
Ivan Rogovskii ◽  
...  

AbstractThe solid fraction, according to many researches, is an effective organic fertilizer, the activity of which is at the level of mineral fertilizers and even exceeds their effectiveness, while the use of the liquid fraction does not always give positive results. In the article the optimal concentration of the liquid fraction in water solution for fertilization during cultivation of onion for chives in soil was determined. Sediment from biogas production was obtained at the thermophilic fermentation (50ºC) of cattle manure in the laboratory institution which operated at the periodical regime of loading. Fermentation lasted 25 days. Seven variants of plant feeding were assessed: clean water (control), mineral fertilizers (solution of ammonium nitrate in water in the concentration of 1:25), unsolved liquid biofuel fraction and mixture of liquid fraction from the postferment with water in concentrations of 1:10, 1:50, 1:100, 1:500. It was determined that the highest efficiency was observed in case of fertilization of plants with the mixture of liquid fraction from postferment with concentration of 1:500. Along with the increase of liquid fraction concentration and fertilization of plants with water solution of mineral fertilizers, onion productivity dropped slightly. Fertilization of plants with the liquid fraction from postferment resulted in fractional dying of plants and reduction of efficiency. The crop control of nitrogen content proved that in case of every day watering of onion with clean water and mixture of liquid fraction with water concentration of 1:100-1:500 did not exceed the maximum admissible concentration which is 800 mg·kg−1. Thus, in case of onion cultivation for chives, taking into consideration the crop growth and low nitrogen content, it is recommended to use the mixture of liquid fraction with water of 1:500 concentration.


Sign in / Sign up

Export Citation Format

Share Document