scholarly journals Internet of Things (IoT)-Enabled Unmanned Aerial Vehicles for the Inspection of Construction Sites: A Vision and Future Directions

2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Ambar Israr ◽  
Ghulam E. Mustafa Abro ◽  
M. Sadiq Ali Khan ◽  
Muhammad Farhan ◽  
Saif ul Azrin Bin Mohd Zulkifli

Today people are witnessing the rapid evolvement in every area. This is because of the emerging trends in communication technology and autonomous unmanned vehicles. These trends have led us towards the high standards of health, energy, transportation, monitoring, and surveillance of huge domestic and industrial projects. Thus, this review paper presents the integration of the latest trend in communication technology, i.e., Internet of things (IoT) with unmanned aerial vehicles (UAVs). This manuscript not only reviews the use of IoT-enabled unmanned aerial vehicles for inspecting the several construction sites but also emphasizes the utilization of such IoT-enabled autonomous aerial vehicles for ensuring the health and safety measures at the site. It discusses the major limitations and shortcomings of state-of-the-art techniques for the same purpose, i.e., optimization issues in path planning, lightweight artificial intelligence (AI) and computer vision algorithms, coordination in communication using IoT, and scalability of IoT network. Thus, this paper shall help the reader to explore different open research problems in-depth.

Sensors ◽  
2021 ◽  
Vol 21 (5) ◽  
pp. 1627
Author(s):  
Giovanni Battista Gaggero ◽  
Mario Marchese ◽  
Aya Moheddine ◽  
Fabio Patrone

The way of generating and distributing energy throughout the electrical grid to all users is evolving. The concept of Smart Grid (SG) took place to enhance the management of the electrical grid infrastructure and its functionalities from the traditional system to an improved one. To measure the energy consumption of the users is one of these functionalities that, in some countries, has already evolved from a periodical manual consumption reading to a more frequent and automatic one, leading to the concept of Smart Metering (SM). Technology improvement could be applied to the SM systems to allow, on one hand, a more efficient way to collect the energy consumption data of each user, and, on the other hand, a better distribution of the available energy through the infrastructure. Widespread communication solutions based on existing telecommunication infrastructures instead of using ad-hoc ones can be exploited for this purpose. In this paper, we recall the basic elements and the evolution of the SM network architecture focusing on how it could further improve in the near future. We report the main technologies and protocols which can be exploited for the data exchange throughout the infrastructure and the pros and cons of each solution. Finally, we propose an innovative solution as a possible evolution of the SM system. This solution is based on a set of Internet of Things (IoT) communication technologies called Low Power Wide Area Network (LPWAN) which could be employed to improve the performance of the currently used technologies and provide additional functionalities. We also propose the employment of Unmanned Aerial Vehicles (UAVs) to periodically collect energy consumption data, with evident advantages especially if employed in rural and remote areas. We show some preliminary performance results which allow assessing the feasibility of the proposed approach.


2020 ◽  
pp. 100187 ◽  
Author(s):  
Achilles D. Boursianis ◽  
Maria S. Papadopoulou ◽  
Panagiotis Diamantoulakis ◽  
Aglaia Liopa-Tsakalidi ◽  
Pantelis Barouchas ◽  
...  

2017 ◽  
Vol 23 (1) ◽  
pp. 305-310
Author(s):  
Richard Stojar

Abstract The text deals with the development and methods of use of Drones or Unmanned Aerial Vehicles in contemporary conflicts or special operations. The contribution tries to present the main advantages of these vehicles as being the main reasons for their current use in armed forces of state as well as non-state actors and their dynamic proliferation in global space in past years. We can observe a new trend in the armed conflict in the last two decades - use of advanced systems of unmanned vehicles in such a range that many military and academic experts talk about a new wave of revolutionary changes in the military affairs. This wave, or we could even talk about militarytechnological breakthrough should lead to imminent use of these systems in contemporary as well as future conflicts which would result in the partial or complex robotization of the battlefield. Specific attention is dedicated to controversies tied to the use of Drones/Unmanned Aerial Vehicles in socalled Drone Warfare and current discussion in the context of cultural or societal dimension of their use and perspectives for further development.


Author(s):  
D. A. Ishchenco ◽  
V. A. Kyryliuk ◽  
S. D. Ishchenco ◽  
L. M. Maryshchuk

The work shows the relevance of the problem of countering reconnaissance and strike unmanned aircraft systems and the need to improve the scientific and methodological support of its solution according to a certain corresponding paradigm. In the work as a paradigm of countering unmanned aerial systems, it is proposed to consider a conceptual theoretical and methodological model of combating unmanned aerial vehicles, which currently provides opportunities for identifying the problems of developing forces and means of countering unmanned aerial systems. The developed paradigm of counteraction can be an element of scientific and methodological support, contributes to the solution of the problem of the complex use of forces and means of counteraction to reconnaissance and strike unmanned aircraft systems in order to acquire the capabilities of troops (forces) to perform tasks as intended in the conditions of the use of unmanned vehicles. The recognition of such a paradigm by specialists determines that their activities are based on the accepted model of countering unmanned aircraft systems, using the same rules and standards established in the industry. The generality and consistency of approaches that they provide are prerequisites for ensuring the required scientific level of a certain direction of research. The proposed approach outlines the tasks, content, components, principles of assessment of means of counteraction to unmanned aerial vehicles by contributing to the effectiveness of the system of protection of the object from reconnaissance and strike (shock) systems of the enemy, which systematizes knowledge in the subject area. problems of modern armed struggle. The prospect of further research is to clarify the mathematical calculations in accordance with the characteristics of troops (forces), military facility, protection system against reconnaissance and strike (strike) unmanned aerial vehicles of the enemy and samples of military equipment that are part of it.


2020 ◽  
Vol 20 (13) ◽  
pp. 7460-7471 ◽  
Author(s):  
Mohammad Javad Sobouti ◽  
Zahra Rahimi ◽  
Amir Hossein Mohajerzadeh ◽  
Seyed Amin Hosseini Seno ◽  
Reza Ghanbari ◽  
...  

Sensors ◽  
2018 ◽  
Vol 18 (11) ◽  
pp. 3951 ◽  
Author(s):  
Qi Pan ◽  
Xiangming Wen ◽  
Zhaoming Lu ◽  
Linpei Li ◽  
Wenpeng Jing

With the new advancements in flight control and integrated circuit (IC) technology, unmanned aerial vehicles (UAVs) have been widely used in various applications. One of the typical application scenarios is data collection for large-scale and remote sensor devices in the Internet of things (IoT). However, due to the characteristics of massive connections, access collisions in the MAC layer lead to high power consumption for both sensor devices and UAVs, and low efficiency for the data collection. In this paper, a dynamic speed control algorithm for UAVs (DSC-UAV) is proposed to maximize the data collection efficiency, while alleviating the access congestion for the UAV-based base stations. With a cellular network considered for support of the communication between sensor devices and drones, the connection establishment process was analyzed and modeled in detail. In addition, the data collection efficiency is also defined and derived. Based on the analytical models, optimal speed under different sensor device densities is obtained and verified. UAVs can dynamically adjust the speed according to the sensor device density under their coverages to keep high data collection efficiency. Finally, simulation results are also conducted to verify the accuracy of the proposed analytical models and show that the DSC-UAV outperforms others with the highest data collection efficiency, while maintaining a high successful access probability, low average access delay, low block probability, and low collision probability.


Sensors ◽  
2020 ◽  
Vol 20 (19) ◽  
pp. 5586
Author(s):  
Shreya Khisa ◽  
Sangman Moh

The Internet of Things (IoT), which consists of a large number of small low-cost devices, has become a leading solution for smart cities, smart agriculture, smart buildings, smart grids, e-healthcare, etc. Integrating unmanned aerial vehicles (UAVs) with IoT can result in an airborne UAV-based IoT (UIoT) system and facilitate various value-added services from sky to ground. In addition to wireless sensors, various kinds of IoT devices are connected in UIoT, making the network more heterogeneous. In a UIoT system, for achieving high throughput in an energy-efficient manner, it is crucial to design an efficient medium access control (MAC) protocol because the MAC layer is responsible for coordinating access among the IoT devices in the shared wireless medium. Thus, various MAC protocols with different objectives have been reported for UIoT. However, to the best of the authors’ knowledge, no survey had been performed so far that dedicatedly covers MAC protocols for UIoT. Hence, in this study, state-of-the-art MAC protocols for UIoT are investigated. First, the communication architecture and important design considerations of MAC protocols for UIoT are examined. Subsequently, different MAC protocols for UIoT are classified, reviewed, and discussed with regard to the main ideas, innovative features, advantages, limitations, application domains, and potential future improvements. The reviewed MAC protocols are qualitatively compared with regard to various operational characteristics and system parameters. Additionally, important open research issues and challenges with recommended solutions are summarized and discussed.


Sign in / Sign up

Export Citation Format

Share Document