scholarly journals Identification of Stabilization of Malvid Anthocyanins and Antioxidant Stress Activation via the AMPK/SIRT1 Signaling Pathway

2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Fei Zheng ◽  
Hai Xue ◽  
Bi-Xiang Wang ◽  
Man-Yu Wu ◽  
Dong-Xia Chen ◽  
...  

Vitis amurensis Rupr. “Beibinghong” is abundant in anthocyanins, including malvidin (Mv), malvidin-3-glucoside (Mv3G), and malvidin-3,5-diglucoside (Mv35 G). Anthocyanins offer nutritional and pharmacological effects, but their stability is poor. Interaction of malvid anthocyanins with caffeic acid through ultrahigh pressure technology produces stable anthocyanin derivatives. This study aims to identify the structure of stable mallow-like anthocyanins and to determine the effect of these stable anthocyanins on human umbilical vein endothelial cells (HUVECs) with H2O2-induced oxidative damage and the signaling pathway involved. The products of malvid anthocyanins and caffeic acid bonding were identified and analyzed using ultra-high performance liquid chromatography-quadrupole-Orbitrap mass spectrometry (UPLC-Q-Orbitrap MS/MS). The bonding products were malvidin-3-O-guaiacol (Mv3C), malvidin-3-O-(6″-O-caffeoyl)-glucoside (Mv3CG), and malvidin-3-O-(6″-O-caffeoyl)-5-diglucoside (Mv3C5G). An oxidative stress injury model in HUVECs was established using H2O2 and treated with Mv, Mv3G, Mv35 G, Mv3C, Mv3CG, and Mv3C5G at different concentrations (10, 50, and 100 μmol/L). Results showed that the above compound concentrations can significantly increase cell proliferation rate and reduce intracellular reactive oxygen species at 100 μmol/L. The effects of the most active products Mv and Mv3C on the AMP-activated protein (AMPK)/silencing information regulator-1 (SIRT1) pathway were analyzed. Results showed that Mv and Mv3C significantly increased SOD activity in the cells and significantly upregulated the expression of SIRT1 mRNA, SIRT1, and p-AMPK protein. However, they did not significantly change the expression of AMPK protein. After the silent intervention of siRNA in SIRT1 gene expression, the upregulation of SIRT1 and p-AMPK protein by Mv and Mv3C was significantly inhibited. These results indicate that stabilization malvid anthocyanins exerts an antioxidant activity via the AMPK/SIRT1 signaling pathway.

BioFactors ◽  
2016 ◽  
Vol 43 (1) ◽  
pp. 54-62 ◽  
Author(s):  
Deborah Fratantonio ◽  
Antonio Speciale ◽  
Raffaella Canali ◽  
Lucia Natarelli ◽  
Daniela Ferrari ◽  
...  

2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Jingshang Wang ◽  
Huijun Yin ◽  
Ye Huang ◽  
Chunyu Guo ◽  
Chengdong Xia ◽  
...  

Panax quinquefolius saponin of stem and leaf (PQS), the effective parts of American ginseng, is widely used in China as a folk medicine for diabetes and cardiovascular diseases treatment. In our previous studies, we have demonstrated that PQS could improve the endothelial function of type II diabetes mellitus (T2DM) rats with high glucose fluctuation. In the present study, we investigated the protective effects of PQS against intermittent high glucose-induced oxidative damage on human umbilical vein endothelial cells (HUVECs) and the role of phosphatidylinositol 3-kinase kinase (PI3K)/Akt/GSK-3βpathway involved. Our results suggested that exposure of HUVECs to a high glucose concentration for 8 days showed a great decrease in cell viability accompanied by marked MDA content increase and SOD activity decrease. Moreover, high glucose significantly reduced the phosphorylation of Akt and GSK-3β. More importantly, these effects were even more evident in intermittent high glucose condition. PQS treatment significantly attenuated intermittent high glucose-induced oxidative damage on HUVECs and meanwhile increased cell viability and phosphorylation of Akt and GSK-3βof HUVECs. Interestingly, all these reverse effects of PQS on intermittent high glucose-cultured HUVECs were inhibited by PI3K inhibitor LY294002. These findings suggest that PQS attenuates intermittent-high-glucose-induced oxidative stress injury in HUVECs by PI3K/Akt/GSK-3βpathway.


Sign in / Sign up

Export Citation Format

Share Document