scholarly journals Improved Mitigation Method for the Multipath Delays of BDS-3 Code Observations with the Aid of a Sparse Modeling Algorithm

2021 ◽  
Vol 2021 ◽  
pp. 1-19
Author(s):  
Chao Hu ◽  
Qianxin Wang ◽  
Alberto Hernandez Moraleda

Global navigation satellite systems are essential for positioning, navigation, and timing services. The quality and reliability of satellite observations determine the system performance, especially in the case of the newly launched global BDS-3 service. However, analyses of multipath delays in BDS-3 satellite observations suggest that there are appreciable errors at different frequencies. Improvement of the accuracy and precision of positioning, navigation, and timing services provided by BDS-3 requires the mitigation of multipath delays of the satellite observations. This paper models the multipath delays of BDS-3 observations using a least-squares combined autoregressive method. Furthermore, a sparse modeling algorithm is proposed to obtain a multipath delay series using total variation and elastic net terms for denoising and eliminating the effect of limited original observations. The estimated coefficients of multipath delays are then set as prior information to correct the next-arc code observations, where the square-root information filter is used in the coefficient estimation. Moreover, four groups of experiments are conducted to analyze the results of modeling the BDS-3 multipath delay using the proposed methods, with single-frequency precise point positioning (PPP) and real-time PPP solutions being selected to test the correction of multipath delays in BDS-3 code observations. The residuals of iGMAS and MGEX station coordinates indicate improvements in eastward, northward, and upward directions of at least 4.1%, 9.6%, and 1.2%, respectively, for the frequency B1I; 6.6%, 5.3%, and 0.2%, respectively, for B3I, 12.5%, 14.3%, and 3.8%, respectively, for B1C; and 5.9%, 7.4%, and 18.1%, respectively, for B2a relative to the use of the traditional method in BDS-3 single-frequency PPP. Furthermore, the real-time double-frequency PPP is optimized by at least 10% for B 1 I + B 3 I and B 1 C + B 2 a . An improved result was obtained with the proposed strategy in a standard point positioning experiment. The proposed multipath delay mitigation method is therefore effective in improving BDS-3 satellite code observations.

Author(s):  
Julián Tomaštík ◽  
Juliána Chudá ◽  
Daniel Tunák ◽  
František Chudý ◽  
Miroslav Kardoš

Abstract Smartphones with their capability to receive Global Navigation Satellite Systems (GNSS) signals can be currently considered the most common devices used for positioning tasks, including forestry applications. This study focuses on possible improvements related to two crucial changes implemented into Android smartphone positioning in the last 3 years – dual-frequency (L1/L5) GNSS receivers and the possibility of recording raw GNSS data. The study comprises three experiments: (1) real-time measurements of individual points, (2) real-time recording of trajectories, and (3) post-processing of raw GNSS data provided by the smartphone receiver. The real-time tests were conducted using final positions provided by the internal receiver, i.e. without further processing or averaging. The test on individual points has proven that the Xiaomi Mi8 smartphone with a multi-constellation, dual-frequency receiver was the only device whose accuracy was not significantly different from single-frequency mapping-grade receiver under any conditions. The horizontal accuracy of most devices was lower during leaf-on season (root mean square errors between 5.41 and 12.55 m) than during leaf-off season (4.10–11.44 m), and the accuracy was significantly better under open-area conditions (1.72–4.51 m) for all tested devices when compared with forest conditions. Results of the second experiment with track recording suggest that smartphone receivers are better suited for dynamic applications – the mean shift between reference and measured trajectories varied from 1.23 to 5.98 m under leaf-on conditions. Post-processing of the raw GNSS data in the third experiment brought very variable results. We achieved centimetre-level accuracy under open-area conditions; however, in forest, the accuracies varied from meters to tens of meters. Observed loss of the signal strength in the forest represented ~20 per cent of the open-area value. Overall, the multi-constellation, dual-frequency receiver provided more robust and accurate positional solutions compared with single-frequency smartphones. Applicability of the raw GNSS data must be further studied especially in forests, as the provided data are highly susceptible to multipath and other GNSS adverse effects.


2020 ◽  
Vol 12 (20) ◽  
pp. 3354
Author(s):  
Yang Wang ◽  
Yibin Yao ◽  
Liang Zhang ◽  
Mingshan Fang

Ionospheric delay is a crucial error source and determines the source of single-frequency precise point positioning (SF-PPP) accuracy. To meet the demands of real-time SF-PPP (RT-SF-PPP), several international global navigation satellite systems (GNSS) service (IGS) analysis centers provide real-time global ionospheric vertical total electron content (VTEC) products. However, the accuracy distribution of VTEC products is nonuniform. Proposing a refinement method is a convenient means to obtain a more accuracy and consistent VTEC product. In this study, we proposed a refinement method of a real-time ionospheric VTEC model for China and carried out experiments to validate the model effectiveness. First, based on the refinement method and the Centre National d’Études Spatiales (CNES) VTEC products, three refined real-time global ionospheric models (RRTGIMs) with one, three, and six stations in China were built via GNSS observations. Second, the slant total electron content (STEC) and Jason-3 VTEC were used as references to evaluate VTEC accuracy. Third, RT-SF-PPP was used to evaluate the accuracy in the positioning domain. Results showed that even if using only one station to refine the global ionospheric model, the refined model achieved a better performance than CNES and the Center for Orbit Determination in Europe (CODE). The refinement model with six stations was found to be the best of the three refinement models.


2017 ◽  
Vol 11 (3) ◽  
Author(s):  
Ken Harima ◽  
Suelynn Choy ◽  
Chris Rizos ◽  
Satoshi Kogure

AbstractThis paper presents an investigation into the performance of real-time Global Navigation Satellite Systems (GNSS) Precise Point Positioning (PPP) in New Zealand. The motivation of the research is to evaluate the feasibility of using PPP technique and a satellite based augmentation system such as the Japanese Quasi-Zenith Satellite System (QZSS) to deliver a real-time precise positioning solution in support of a nation-wide high accuracy GNSS positioning coverage in New Zealand. Two IGS real-time correction streams are evaluated alongside with the PPP correction messages transmitted by the QZSS satellite known as MDC1. MDC1 corrections stream is generated by Japan Aerospace Exploration Agency (JAXA) using the Multi-GNSS Advanced Demonstration tool for Orbit and Clock Analysis (MADOCA) software and are currently transmitted in test mode by the QZSS satellite. The IGS real-time streams are the CLK9B real-time corrections stream generated by the French Centre National D’études Spatiales (CNES) using the PPP-Wizard software, and the CLK81 real-time corrections stream produced by GMV using their MagicGNSS software. GNSS data is collected from six New Zealand CORS stations operated by Land Information New Zealand (LINZ) over a one-week period in 2015. GPS and GLONASS measurements are processed in a real-time PPP mode using the satellite orbit and clock corrections from the real-time streams. The results show that positioning accuracies of 6 cm in horizontal component and 15 cm in vertical component can be achieved in real-time PPP. The real-time GPS+GLONASS PPP solution required 30 minutes to converge to within 10 cm horizontal positioning accuracy.


2022 ◽  
Vol 12 (1) ◽  
pp. 435
Author(s):  
Shulin Zeng ◽  
Cuilin Kuang ◽  
Wenkun Yu

Modern low-cost electronic devices can achieve high precision for global navigation satellite systems (GNSSs) and related applications. Recently, the pseudo-range and carrier phase have been directly obtained from a smartphone to establish a professional-level surveying device. Although promising results have been obtained by linking to an external GNSS antenna, the real-time kinematic (RTK) positioning performance requires further improvement when using the embedded smartphone antenna. We first investigate the observation quality characteristics of the Xiaomi Mi 8 smartphone. The carrier-to-noise-density ratio of L5/E5a signals is below that of L1/E1 signals, and the cycle slip and loss of lock are severe, especially for L5/E5a signals. Therefore, we use an improved stochastic model and ambiguity-resolution strategies to improve the short-baseline RTK positioning accuracy. Experimental results show that the ambiguity fixing rate can reach approximately 90% in 3 h of observations when using the embedded antenna, while the GPS/Galileo/BDS single-frequency combination is more suitable for smartphones. On the other hand, convergence takes 10–30 min, and the RTK positioning accuracy can reach 1 and 2 cm along the horizontal and vertical directions, respectively, if ambiguity is resolved correctly. Moreover, we verify the feasibility of using a mass-produced smartphone for deformation monitoring. Results from a simulated dynamic deformation experiment indicate that a smartphone can recognise deformations as small as 2 cm.


Sensors ◽  
2020 ◽  
Vol 20 (15) ◽  
pp. 4073 ◽  
Author(s):  
Wenhao Yang ◽  
Yue Liu ◽  
Fanming Liu

The Global Navigation Satellite Systems (GNSS) becomes the primary choice for device localization in outdoor situations. At the same time, many applications do not require precise absolute Earth coordinates, but instead, inferring the geometric configuration information of the constituent nodes in the system by relative positioning. The Real-Time Kinematic (RTK) technique shows its efficiency and accuracy in calculating the relative position. However, when the cycle slips occur, the RTK method may take a long time to obtain a fixed ambiguity value, and the positioning result will be a “float” solution with a low meter accuracy. The novel method presented in this paper is based on the Relative GNSS Tracking Algorithm (Regtrack). It calculates the changes in the relative baseline between two receivers without an ambiguity estimation. The dead reckoning method is used to give out the relative baseline solution while a parallel running Extended Kalman Filter (EKF) method reinitiates the relative baseline when too many validation failures happen. We conducted both static and kinematic tests to assess the performance of the new methodology. The experimental results show that the proposed strategy can give accurate millimeter-scale solutions of relative motion vectors in adjacent two epochs. The relative baseline solution can be sub-decimeter level with or without the base station is holding static. In the meantime, when the initial tracking point and base station coordinates are precisely obtained, the tracking result error can be only 40 cm away from the ground truth after a 25 min drive test in an urban environment. The efficiency test shows that the proposed method can be a real-time method, the time that calculates one epoch of measurement data is no more than 80 ms and is less than 10 ms for best results. The novel method can be used as a more robust and accurate ambiguity free tracking approach for outdoor applications.


2015 ◽  
Vol 68 (4) ◽  
pp. 769-783 ◽  
Author(s):  
Suelynn Choy ◽  
Ken Harima ◽  
Yong Li ◽  
Mazher Choudhury ◽  
Chris Rizos ◽  
...  

The Japanese Quasi-Zenith Satellite System (QZSS) is a regional satellite navigation system capable of transmitting navigation signals that are compatible and interoperable with other Global Navigation Satellite Systems (GNSS). In addition to navigation signals, QZSS also transmits augmentation signals, e.g. the L-band Experimental (LEX) signal. The LEX signal is unique for QZSS in delivering correction messages such as orbits and clock information that enable real-time Precise Point Positioning (PPP). This study aims to evaluate the availability of the LEX signal as well as the quality of the broadcast correction messages for real-time PPP applications. The system is tested in both static and kinematic positioning modes. The results show that the availability of the LEX signal is 60% when the QZSS satellite elevation is at 30° and above 90% when the satellite is above 40° elevation. Centimetre-level position accuracy can be obtained for static PPP processing after two hours of convergence using the current MADOCA-LEX (Multi-GNSS Advanced Demonstration of Orbit and Clock Analysis) correction messages transmitted on the LEX signal; and decimetre-level point positioning accuracy can be obtained for kinematic PPP processing.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Alaa A. Elghazouly ◽  
Mohamed I. Doma ◽  
Ahmed A. Sedeek

Abstract Due to the ionosphere delay, which has become the dominant GPS error source, it is crucial to remove the ionospheric effect before estimating point coordinates. Therefore, different agencies started to generate daily Global Ionosphere Maps (GIMs); the Vertical Total Electron Content (VTEC) values represented in GIMs produced by several providers can be used to remove the ionosphere error from observations. In this research, An analysis will be carried with three sources for VTEC maps produced by the Center for Orbit Determination in Europe (CODE), Regional TEC Mapping (RTM), and the International Reference Ionosphere (IRI). The evaluation is focused on the effects of a specific ionosphere GIM correction on the precise point positioning (PPP) solutions. Two networks were considered. The first network consists of seven Global Navigation Satellite Systems (GNSS) receivers from (IGS) global stations. The selected test days are six days, three of them quiet, and three other days are stormy to check the influence of geomagnetic storms on relative kinematic positioning solutions. The second network is a regional network in Egypt. The results show that the calculated coordinates using the three VTEC map sources are far from each other on stormy days rather than on quiet days. Also, the standard deviation values are large on stormy days compared to those on quiet days. Using CODE and RTM IONEX file produces the most precise coordinates after that the values of IRI. The elimination of ionospheric biases over the estimated lengths of many baselines up to 1000 km has resulted in positive findings, which show the feasibility of the suggested assessment procedure.


Sensors ◽  
2019 ◽  
Vol 19 (15) ◽  
pp. 3376 ◽  
Author(s):  
Yuan Du ◽  
Guanwen Huang ◽  
Qin Zhang ◽  
Yang Gao ◽  
Yuting Gao

Real-time kinematic (RTK) positioning is a satellite navigation technique that is widely used to enhance the precision of position data obtained from global navigation satellite systems (GNSS). This technique can reduce or eliminate significant correlation errors via the enhancement of the base station observation data. However, observations received by the base station are often interrupted, delayed, and/or discontinuous, and in the absence of base station observation data the corresponding positioning accuracy of a rover declines rapidly. With the strategies proposed till date, the positioning accuracy can only be maintained at the centimeter-level for a short span of time, no more than three min. To address this, a novel asynchronous RTK method (that addresses asynchronous errors) that can bridge significant gaps in the observations at the base station is proposed. First, satellite clock and orbital errors are eliminated using the products of the final precise ephemeris during post-processing or the ultra-rapid precise ephemeris during real-time processing. Then the tropospheric error is corrected using the Saastamoinen model and the asynchronous ionospheric delay is corrected using the carrier phase measurements from the rover receiver. Finally, a straightforward first-degree polynomial function is used to predict the residual asynchronous error. Experimental results demonstrate that the proposed approach can achieve centimeter-level accuracy for as long as 15 min during interruptions in both real-time and post-processing scenarios, and that the accuracy of the real-time scheme can be maintained for 15 min even when a large systematic error is projected in the U direction.


2007 ◽  
Vol 42 (3) ◽  
pp. 149-153
Author(s):  
A. Farah

Code Single Point Positioning Using Nominal Gnss Constellations (Future Perception) Global Navigation Satellite Systems (GNSS) have an endless number of applications in industry, science, military, transportation and recreation & sports. Two systems are currently in operation namely GPS (the USA Global Positioning System) and GLONASS (the Russian GLObal NAvigation Satellite System), and a third is planned, the European satellite navigation system GALILEO. The potential performance improvements achievable through combining these systems could be significant and expectations are high. The need is inevitable to explore the future of positioning from different nominal constellations. In this research paper, Bernese 5.0 software could be modified to simulate and process GNSS observations from three different constellations (GPS, Glonass and Galileo) using different combinations. This study presents results of code single point positioning for five stations using the three constellations and different combinations.


Sensors ◽  
2019 ◽  
Vol 19 (5) ◽  
pp. 1138 ◽  
Author(s):  
Liang Zhang ◽  
Yibin Yao ◽  
Wenjie Peng ◽  
Lulu Shan ◽  
Yulin He ◽  
...  

The prevalence of real-time, low-cost, single-frequency, decimeter-level positioning has increased with the development of global navigation satellite systems (GNSSs). Ionospheric delay accounts for most errors in real-time single-frequency GNSS positioning. To eliminate ionospheric interference in real-time single-frequency precise point positioning (RT-SF-PPP), global ionospheric vertical total electron content (VTEC) product is designed in the next stage of the International GNSS Service (IGS) real-time service (RTS). In this study, real-time generation of a global ionospheric map (GIM) based on IGS RTS is proposed and assessed. There are three crucial steps in the process of generating a real-time global ionospheric map (RTGIM): estimating station differential code bias (DCB) using the precise point positioning (PPP) method, deriving slant total electron content (STEC) from PPP with raw observations, and modeling global vertical total electron content (VTEC). Experiments were carried out to validate the algorithm’s effectiveness. First, one month’s data from 16 globally distributed IGS stations were used to validate the performance of DCB estimation with the PPP method. Second, 30 IGS stations were used to verify the accuracy of static PPP with raw observations. Third, the modeling of residuals was assessed in high and quiet ionospheric activity periods. Afterwards, the quality of RTGIM products was assessed from two aspects: (1) comparison with the Center for Orbit Determination in Europe (CODE) global ionospheric map (GIM) products and (2) determination of the performance of RT-SF-PPP with the RTGIM. Experimental results show that DCB estimation using the PPP method can realize an average accuracy of 0.2 ns; static PPP with raw observations can achieve an accuracy of 0.7, 1.2, and 2.1 cm in the north, east, and up components, respectively. The average standard deviations (STDs) of the model residuals are 2.07 and 2.17 TEC units (TECU) for moderate and high ionospheric activity periods. Moreover, the average root-mean-square (RMS) error of RTGIM products is 2.4 TECU for the one-month moderate ionospheric period. Nevertheless, for the high ionospheric period, the RMS is greater than the RMS in the moderate period. A sub-meter-level horizontal accuracy and meter-level vertical accuracy can be achieved when the RTGIM is employed in RT-SF-PPP.


Sign in / Sign up

Export Citation Format

Share Document