scholarly journals Evaluation Method of the Vertical Well Hydraulic Fracturing Effect Based on Production Data

Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Debin Xia ◽  
Zhengming Yang ◽  
Daolun Li ◽  
Yapu Zhang ◽  
Ying He ◽  
...  

Hydraulic fracturing technology has become a key technology for the development of low-permeability/tight oil and gas reservoirs. The evaluation on the postfracturing effect is imperative to the formulation and implementation of the fracturing and development plan. Based on the characteristics of the flow in fracture network after a large-scale hydraulic fracturing, a numerical method for evaluating the effect of fracturing in vertical well was established. This study conducts postfracturing effect evaluations to block C Oilfield’s wells that underwent conventional fracturing and volumetric fracturing, respectively, proposes the definition of fracture network conductivity and its relationship with cumulative production, and analyzes the fracturing construction parameters. The results suggest that the conventional fracturing can only form a single fracture instead of a stimulated reservoir volume (SRV) region. However, the volumetric fracturing transformation can form a complex fracture network system and SRV region and meanwhile bring obvious increase in the production. The effective time lasts for a longer period, and the increase of average daily oil is 2.2 times more than that of conventional fracturing. Additionally, with the progress of the production, the SRV area within the core region of the volume transformation gradually decreased from 6664.84 m2 to 4414.45 m2; the SRV area of the outer region decreased from 7913.5 m2 to 5391.3 m2. As the progress develops, the equivalent permeability and the area of the fracture gradually decrease as the fracturing effect gradually weakens, and so does the conductivity of the network decreasing exponentially; a good correlation is observed between the conductivity of the fracture network, the cumulative production, and fracturing construction parameters, which can serve as the evaluation parameters for the fracturing effects and the basis for fracturing productivity prediction and provide a guidance for fracturing optimization design.

Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Qingyan Yu ◽  
Qi Wang ◽  
Pengcheng Liu ◽  
Jing Zhang ◽  
Qi Zhang ◽  
...  

Carbonate reservoirs are mainly fractured-caved reservoirs with very well-developed dissolved pores, fractures, and caves. They have strong heterogeneity with various types of reservoir pore spaces. Using seismic inversion and reservoir static characterization, the result shows that the fractured-caved carbonate rocks in China are mainly caves with poor connectivity and complex oil-water distribution. Large-scale dissolved caves are mostly discrete and isolated, while the fractures are complex and various. The fracture features are observed either as a single large fractures or as a local fracture network. The characteristics of fluid flow in fracture-caved reservoirs vary as a result of the different combinations of fractures and caves. Currently, the static characterization technology of fractured-caved reservoirs is influenced by the limited resolution of seismic data, leading to large interpretation errors. In contrast, the dynamic method is a more reliable and effective method to determine reservoir parameters. However, traditional seepage equations cannot accurately characterize the flow pattern of fractured-caved carbonate reservoirs. In the case of a single large-scale dissolved fractured-caved reservoir, oil wells are usually connected to large caves through large fractures or directly drilled into large dissolved caves. In this study, the large-scale dissolved caved reservoir is simplified into two cases: (1) a single-cave and single-fracture series model composed of a single-cave and a single-fracture and (2) a composite model of dissolved caves and surrounding fracture networks. Note that the flow in a large cave is considered as free flow due to its large scale. The flow in a large fracture connected to the cave is considered as flow through porous media, and the flow in the reservoir surrounding the fracture network is considered as multiple-porosity model seepage flow. The corresponding seepage-free flow coupling mathematical model of different fractured-caved reservoirs has been established on this basis. We also obtained the rate transient analysis type curves of the oil well, conducted sensitivity analysis of each parameter, constructed the corresponding rate transient analysis curves, analyzed sensitivities of each parameter, and finally designed a dynamic evaluation method of well and reservoir parameters for different types of fractured-caved carbonate reservoirs. This study extensively applies this method in the Halahatang Oilfield of China and evaluates parameters such as reservoir reserves and physical properties to provide rational guidance for developing fractured-caved carbonate reservoirs.


2020 ◽  
Vol 194 ◽  
pp. 01043
Author(s):  
LI Liangwei

Aiming at the harm and control methods of thick and hard roof in coal mine, the paper firstly analyzes the advanced control methods of thick and hard roof, such as directional shaped charge blasting roof control technology, hydraulic fracturing roof control technology, abrasive water jet directional cutting roof technology, large-scale special roof cutting machine, etc Control hole fracturing, transverse slotting fracturing and longitudinal slotting fracturing are compared and analyzed; finally, the shortcomings of current research are analyzed. According to the current research results, the analysis shows that: the method of controlling roof by blasting in the future will be limited, while the method of hydraulic fracturing, especially directional hydraulic fracturing, has obvious advantages; the longitudinal slotting fracturing has the best control over fractures in the directional hydraulic fracturing technology; the guiding mechanism and fracture extension mechanism of longitudinal slotting hydraulic fracturing in thick and hard roof need to be further studied; lack of field application research and corresponding equipment development, lack of field effect evaluation method after longitudinal slotting fracturing.


2017 ◽  
Vol 2017 ◽  
pp. 1-14 ◽  
Author(s):  
Jiahang Wang ◽  
Xiaodong Wang ◽  
Wenli Xu ◽  
Cheng Lu ◽  
Wenxiu Dong ◽  
...  

This paper presents a semianalytical model to simulate the productivity of a volume fractured vertical well in tight oil reservoirs. In the proposed model, the reservoir is a composite system which contains two regions. The inner region is described as formation with finite conductivity hydraulic fracture network and the flow in fracture is assumed to be linear, while the outer region is simulated by the classical Warren-Root model where radial flow is applied. The transient rate is calculated, and flow patterns and characteristic flowing periods caused by volume fractured vertical well are analyzed. Combining the calculated results with actual production data at the decline stage shows a good fitting performance. Finally, the effects of some sensitive parameters on the type curves are also analyzed extensively. The results demonstrate that the effect of fracture length is more obvious than that of fracture conductivity on improving production in tight oil reservoirs. When the length and conductivity of main fracture are constant, the contribution of stimulated reservoir volume (SRV) to the cumulative oil production is not obvious. When the SRV is constant, the length of fracture should also be increased so as to improve the fracture penetration and well production.


2015 ◽  
Vol 137 (6) ◽  
Author(s):  
Desheng Zhou ◽  
Peng Zheng ◽  
Jiao Peng ◽  
Pei He

Creating complex fracture network by hydraulic fracturing operation in unconventional reservoir development is the key factor of effective exploitation. The mechanism of creating a fracture network is not clear up to today. Conventional hydraulic fracturing theory is based on tensile failure of a rock, and a hydraulic fracture is widely accepted as propagating along the direction of in situ maximum horizontal principal stress in the industry. Based on rock elastic mechanics and fracture mechanics, considering combined tensile and shear failures, the maximum circumferential strain criterion and boundary element method (BEM), the paper studies the induced stress and its variation during a fracture propagation, the interaction between two or more hydraulic fractures, and the interaction between a hydraulic fracture and a natural crack. The paper shows that a propagating fracture will produce induced stresses on surrounding rock and form a stress shadow. Instead of propagation along the direction of maximum horizontal principal stress as a single fracture, the outside two fractures of two or more hydraulic fractures are exclusive and turning away from each other. A natural crack may be awaked and extend at its both tips by a propagating hydraulic fracture before their intersection, and the hydraulic fracture may deflect toward the natural crack. The interaction between a hydraulic fracture and a natural crack depends on the transverse distance between them and the initial length of the crack. The shorter the transverse distance and the longer the crack length are, the higher the possibility of the crack to be awaked is. The research results are helpful in understanding complex fracture network and may be used in determining hydraulic fracture places to create a complex fracture network.


2022 ◽  
Author(s):  
Ruqia Al Shidhani ◽  
Ahmed Al Shueili ◽  
Hussain Al Salmi ◽  
Musallam Jaboob

Abstract Due to a resource optimization and efficiency improvements, wells that are hydraulically fractured in the tight gas Barik Formation of the Khazzan Field in the Sultanate of Oman are often temporarily left shut-in directly following a large scale massive hydraulic fracturing stimulation treatment. Extensive industry literature has often suggested (and reported), that this may result in a significant direct loss of productivity due to the delayed flowback and the resulting fracture conductivity and formation damage. This paper will review the available data from the Khazzan Field address these concerns; indicating where the concerns should and should not necessarily apply. The Barik Formation in the Khazzan Field is an over-pressured gas-condensate reservoir at 4,500 m with gas permeability ranging from 0.1 to 20 mD. The average well after hydraulic fracturing produces 25 MMscfd and 500 bcpd against a wellhead pressure of 4,000 psi. A typical hydraulic fracturing stimulation treatment consists of 14,000 bbl of a borate-crosslinked guar fluid, placing upwards of 1MM Lbs of high conductivity bauxite proppant within a single fracture. In order to assess the potential production loss due to delayed flowback operations, BP Oman performed a suite of formation damage tests including core samples from the Barik reservoir, fracture conductivity considerations and dynamic behaviors. Additionally, normalized production was compared between offset wells that were cleaned-up and put onto production at different times after the hydraulic fracturing operations. Core tests showed a range of fracture conductivities over time with delayed flowback after using the breaker concentrations from actual treatments. As expected, enhanced conductivity was achieved with additional breaker. The magnitude of the conductivity being created in these massive treatments was also demonstrated to be dominant with respect to damage effects. Finally, a normalized comparison of an extensive suite of wells clearly showed no discernible loss of production resulted from any delay in the flowback operations. This paper describes in details the workflow and resulting analysis of the impact of extensive shut-in versus immediate flowback post massive hydraulic fracturing. It indicates that the impact of such events will be limited if the appropriate steps have been taken to minimize the opportunity for damage to occur. Whereas the existing fracturing literature takes the safe stance of indicating that damage will always result from such shut-ins, this paper will demonstrate the limitations of such assumptions and the flexibility that can be demonstrated with real data.


2021 ◽  
pp. 014459872098153
Author(s):  
Yanzhi Hu ◽  
Xiao Li ◽  
Zhaobin Zhang ◽  
Jianming He ◽  
Guanfang Li

Hydraulic fracturing is one of the most important technologies for shale gas production. Complex hydraulic fracture networks can be stimulated in shale reservoirs due to the existence of numerous natural fractures. The prediction of the complex fracture network remains a difficult and challenging problem. This paper presents a fully coupled hydromechanical model for complex hydraulic fracture network propagation based on the discontinuous deformation analysis (DDA) method. In the proposed model, the fracture propagation and rock mass deformation are simulated under the framework of DDA, and the fluid flow within fractures is simulated using lubrication theory. In particular, the natural fracture network is considered by using the discrete fracture network (DFN) model. The proposed model is widely verified against several analytical and experimental results. All the numerical results show good agreement. Then, this model is applied to field-scale modeling of hydraulic fracturing in naturally fractured shale reservoirs. The simulation results show that the proposed model can capture the evolution process of complex hydraulic fracture networks. This work offers a feasible numerical tool for investigating hydraulic fracturing processes, which may be useful for optimizing the fracturing design of shale gas reservoirs.


2021 ◽  
pp. 1-16
Author(s):  
Scott McKean ◽  
Simon Poirier ◽  
Henry Galvis-Portilla ◽  
Marco Venieri ◽  
Jeffrey A. Priest ◽  
...  

Summary The Duvernay Formation is an unconventional reservoir characterized by induced seismicity and fluid migration, with natural fractures likely contributing to both cases. An alpine outcrop of the Perdrix and Flume formations, correlative with the subsurface Duvernay and Waterways formations, was investigated to characterize natural fracture networks. A semiautomated image-segmentation and fracture analysis was applied to orthomosaics generated from a photogrammetric survey to assess small- and large-scale fracture intensity and rock mass heterogeneity. The study also included manual scanlines, fracture windows, and Schmidt hammer measurements. The Perdrix section transitions from brittle fractures to en echelon fractures and shear-damage zones. Multiple scales of fractures were observed, including unconfined, bedbound fractures, and fold-relatedbed-parallel partings (BPPs). Variograms indicate a significant nugget effect along with fracture anisotropy. Schmidt hammer results lack correlation with fracture intensity. The Flume pavements exhibit a regionally extensive perpendicular joint set, tectonically driven fracturing, and multiple fault-damage zones with subvertical fractures dominating. Similar to the Perdrix, variograms show a significant nugget effect, highlighting fracture anisotropy. The results from this study suggest that small-scale fractures are inherently stochastic and that fractures observed at core scale should not be extrapolated to represent large-scale fracture systems; instead, the effects of small-scale fractures are best represented using an effective continuum approach. In contrast, large-scale fractures are more predictable according to structural setting and should be characterized robustly using geological principles. This study is especially applicable for operators and regulators in the Duvernay and similar formations where unconventional reservoir units abut carbonate formations.


Sign in / Sign up

Export Citation Format

Share Document