scholarly journals Quantitative Inversion of Water-Inrush Incidents in Mountain Tunnel beneath a Karst Pit

2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
Fei Wan ◽  
Peiwen Xu ◽  
Peng Zhang ◽  
Hongfu Qu ◽  
Lihua Wang ◽  
...  

Quantitative inversion of accidents is an important work of finding the cause of accidents and avoiding their recurrence. However, quantitative inversion of accidents is difficult due to the lack and limitation of accidents monitoring information. Focusing on water-inrush incidents of Jiguan Mountain tunnel, this paper proposes a set of workflows to find out the missing conditions and quantitative inversion of accidents by flow analysis and structural safety analysis on the basis of investigating the rain capacity and water outflow in water-inrush incidents. First, hydraulic boundary in water-inrush incidents is acquired by analyzing the relationship of catchment, infiltration, and accumulation of rainwater in karst pit using the flooding algorithm of ArcGIS and the topographic mapping of UAV photogrammetry. Second, the permeability coefficients of karst infiltration zone and tunnel surrounding rock are acquired by two-step decoupling and inverse analyzing the water inflow, flow rate, and interval time between rainfall and water inrush. Third, tunnel accidents of the overload of tunnel lining induced by the catchment and infiltration of karst pit under extreme rainfall conditions are numerically simulated by using FLAC. The results indicate that quantitative inversion of water-inrush incidents reveals the process and cause of accidents and provides the safety index of tunnel structure. Not only is the water-inrush incidents of karst tunnel controlled by hydrogeology conditions, but also the rainfall recharge should not be ignored.

2011 ◽  
Vol 422 ◽  
pp. 486-489
Author(s):  
Qing Wu ◽  
Xiao Bei Wang ◽  
Quan Lai Li ◽  
Yan Xiang Yang

The two-phase flow field of SX type static mixer is analyzed in this paper. The comprehensive influencing factors are considered during analyzing the relationship of two-phase flowage parameters in practical device. Then the theoretical study is carried out. The two-phase flow is impinged, separated, flowed around and merged. The mixture effect is strengthened. The analytic calculation is carried out according to the practicable turbulent flow pattern and the results is useful for the structure parameters effectively selection and the characteristic optimization.


Author(s):  
Emanuele B. Manke ◽  
Claudia F. A. Teixeira-Gandra ◽  
Rita de C. F. Damé ◽  
André B. Nunes ◽  
Maria C. C. Chagas Neta ◽  
...  

ABSTRACT Although several studies have evaluated the intensity-duration-frequency relationships of extreme rainfall events, these relationships under different seasonal conditions remain relatively unknown. Thus, this study aimed to determine whether the intensity-duration-frequency relationships obtained seasonally from the rainfall records in the winter and summer represent the maximum rainfall events for the city of Pelotas, Rio Grande do Sul state, Brazil. Pluviographic data from 1982 to 2015 were used to create two seasonal series: one for the summer from December 21 to March 20 and the other for the winter from June 21 to September 22. These seasonal relationships were compared with the annual pluviographic data. The intensity, duration, and frequency relationships obtained from the summer rain data adequately represented the maximum rainfall in Pelotas, Rio Grande do Sul state, Brazil. The maximum intensity values of rainfall obtained from the relationship of intensity, duration, and frequency for the winter did not adequately encapsulate the occurrence of rain with greater intensities.


Author(s):  
Quan Trong Nguyen ◽  
Nhi Thi Thao Pham ◽  
Khoi Nguyen Dao

Recently, the Intensity – Duration – Frequency (IDF) relationship of extreme rainfalls in a local area is usually investigated to provide accurate required data for calculating, planning, and developing urban drainage systems, especially in the context of climate change. Traditionally, IDF curves are computed based on a statistical method for analyzing the frequency of occurrence or non-occurrence of annual extreme rainfall events over a return period; or based on a probability distribution function of these events. However, these traditional methods do not take into consideration the relationship between extreme rainfalls of different durations as they only simulate the intensity of extreme rainfall events at each individual duration after generated a large number of parameter sets. Therefore, the results of these methods are inaccurate and much depend on the actual observed data. In this study, a new approach to develop IDF relations was proposed based on the scale-invariance nature of extreme rainfalls at different durations. This method will be examined and compared with traditional methods based on the IDF curves of extreme rainfalls at Tan Son Nhat gauge station (HCMC) from 1980 to 2015. Results have indicated that there is a linear relationship between extreme rainfalls at different time scales and showed that the proposed method is appropriate for estimating the IDF curves with many prominent advantages rather than traditional method.


Paleobiology ◽  
1980 ◽  
Vol 6 (02) ◽  
pp. 146-160 ◽  
Author(s):  
William A. Oliver

The Mesozoic-Cenozoic coral Order Scleractinia has been suggested to have originated or evolved (1) by direct descent from the Paleozoic Order Rugosa or (2) by the development of a skeleton in members of one of the anemone groups that probably have existed throughout Phanerozoic time. In spite of much work on the subject, advocates of the direct descent hypothesis have failed to find convincing evidence of this relationship. Critical points are:(1) Rugosan septal insertion is serial; Scleractinian insertion is cyclic; no intermediate stages have been demonstrated. Apparent intermediates are Scleractinia having bilateral cyclic insertion or teratological Rugosa.(2) There is convincing evidence that the skeletons of many Rugosa were calcitic and none are known to be or to have been aragonitic. In contrast, the skeletons of all living Scleractinia are aragonitic and there is evidence that fossil Scleractinia were aragonitic also. The mineralogic difference is almost certainly due to intrinsic biologic factors.(3) No early Triassic corals of either group are known. This fact is not compelling (by itself) but is important in connection with points 1 and 2, because, given direct descent, both changes took place during this only stage in the history of the two groups in which there are no known corals.


Author(s):  
D. F. Blake ◽  
L. F. Allard ◽  
D. R. Peacor

Echinodermata is a phylum of marine invertebrates which has been extant since Cambrian time (c.a. 500 m.y. before the present). Modern examples of echinoderms include sea urchins, sea stars, and sea lilies (crinoids). The endoskeletons of echinoderms are composed of plates or ossicles (Fig. 1) which are with few exceptions, porous, single crystals of high-magnesian calcite. Despite their single crystal nature, fracture surfaces do not exhibit the near-perfect {10.4} cleavage characteristic of inorganic calcite. This paradoxical mix of biogenic and inorganic features has prompted much recent work on echinoderm skeletal crystallography. Furthermore, fossil echinoderm hard parts comprise a volumetrically significant portion of some marine limestones sequences. The ultrastructural and microchemical characterization of modern skeletal material should lend insight into: 1). The nature of the biogenic processes involved, for example, the relationship of Mg heterogeneity to morphological and structural features in modern echinoderm material, and 2). The nature of the diagenetic changes undergone by their ancient, fossilized counterparts. In this study, high resolution TEM (HRTEM), high voltage TEM (HVTEM), and STEM microanalysis are used to characterize tha ultrastructural and microchemical composition of skeletal elements of the modern crinoid Neocrinus blakei.


Author(s):  
Leon Dmochowski

Electron microscopy has proved to be an invaluable discipline in studies on the relationship of viruses to the origin of leukemia, sarcoma, and other types of tumors in animals and man. The successful cell-free transmission of leukemia and sarcoma in mice, rats, hamsters, and cats, interpreted as due to a virus or viruses, was proved to be due to a virus on the basis of electron microscope studies. These studies demonstrated that all the types of neoplasia in animals of the species examined are produced by a virus of certain characteristic morphological properties similar, if not identical, in the mode of development in all types of neoplasia in animals, as shown in Fig. 1.


Author(s):  
J.R. Pfeiffer ◽  
J.C. Seagrave ◽  
C. Wofsy ◽  
J.M. Oliver

In RBL-2H3 rat leukemic mast cells, crosslinking IgE-receptor complexes with anti-IgE antibody leads to degranulation. Receptor crosslinking also stimulates the redistribution of receptors on the cell surface, a process that can be observed by labeling the anti-IgE with 15 nm protein A-gold particles as described in Stump et al. (1989), followed by back-scattered electron imaging (BEI) in the scanning electron microscope. We report that anti-IgE binding stimulates the redistribution of IgE-receptor complexes at 37“C from a dispersed topography (singlets and doublets; S/D) to distributions dominated sequentially by short chains, small clusters and large aggregates of crosslinked receptors. These patterns can be observed (Figure 1), quantified (Figure 2) and analyzed statistically. Cells incubated with 1 μg/ml anti-IgE, a concentration that stimulates maximum net secretion, redistribute receptors as far as chains and small clusters during a 15 min incubation period. At 3 and 10 μg/ml anti-IgE, net secretion is reduced and the majority of receptors redistribute rapidly into clusters and large aggregates.


Sign in / Sign up

Export Citation Format

Share Document