scholarly journals A Roadway Safety Sustainable Approach: Modeling for Real-Time Traffic Crash with Limited Data and Its Reliability Verification

2022 ◽  
Vol 2022 ◽  
pp. 1-14
Author(s):  
Zhenzhou Yuan ◽  
Kun He ◽  
Yang Yang

With the development of freeway system informatization, it is easier to obtain the traffic flow data of freeway, which are widely used to study the relationship between traffic flow state and traffic safety. However, as the development degree of the freeway system is different in different regions, the sample size of traffic data collected in some regions is insufficient, and the precision of data is relatively low. In order to study the influence of limited data on the real-time freeway traffic crash risk modeling, three data sets including high precision data, small sample data, and low precision data were considered. Firstly, Bayesian Logistic regression was used to identify and predict the risk of three data sets. Secondly, based on the Bayesian updating method, the migration test towards high and low precision data sets was established. Finally, the applicability of machine learning and statistical methods to low precision data set was compared. The results show that the prediction performance of Bayesian Logistic regression improves with the increasing of sample size. Bayesian Logistic regression can identify various significant risk factors when data sets are of different precision. Comparatively, the prediction performance of the support vector machine is better than that of Bayesian Logistic. In addition, Bayesian updating method can improve the prediction performance of the transplanted model.

Author(s):  
Šinkovec ◽  
Geroldinger ◽  
Heinze

The parameters of logistic regression models are usually obtained by the method of maximum likelihood (ML). However, in analyses of small data sets or data sets with unbalanced outcomes or exposures, ML parameter estimates may not exist. This situation has been termed ‘separation’ as the two outcome groups are separated by the values of a covariate or a linear combination of covariates. To overcome the problem of non-existing ML parameter estimates, applying Firth’s correction (FC) was proposed. In practice, however, a principal investigator might be advised to ‘bring more data’ in order to solve a separation issue. We illustrate the problem by means of examples from colorectal cancer screening and ornithology. It is unclear if such an increasing sample size (ISS) strategy that keeps sampling new observations until separation is removed improves estimation compared to applying FC to the original data set. We performed an extensive simulation study where the main focus was to estimate the cost-adjusted relative efficiency of ML combined with ISS compared to FC. FC yielded reasonably small root mean squared errors and proved to be the more efficient estimator. Given our findings, we propose not to adapt the sample size when separation is encountered but to use FC as the default method of analysis whenever the number of observations or outcome events is critically low.


Author(s):  
Hana Šinkovec ◽  
Angelika Geroldinger ◽  
Georg Heinze

The parameters of logistic regression models are usually obtained by the method of maximum likelihood (ML). However, in analyses of small data sets or data sets with unbalanced outcomes or exposures, ML parameter estimates may not exist. This situation has been termed “separation” as the two outcome groups are separated by the values of a covariate or a linear combination of covariates. To overcome the problem of non-existing ML parameter estimates, applying Firth’s correction (FC) was proposed. In practice, however, a principal investigator might be advised to “bring more data” in order to solve a separation issue. We illustrate the problem by means of an examples from colorectal cancer screening and ornithology. It is unclear if such an increasing sample size (ISS) strategy that keeps sampling new observations until separation is removed improves estimation compared to applying FC to the original data set. We performed an extensive simulation study where the main focus was to estimate the cost-adjusted relative efficiency of ML combined with ISS compared to FC. FC yielded reasonably small root mean squared errors and proved to be the more efficient estimator. Given our findings, we propose not to adapt the sample size when separation is encountered but to use FC as the default method of analysis whenever the number of observations or outcome events is critically low.


2021 ◽  
Vol 99 (Supplement_1) ◽  
pp. 218-219
Author(s):  
Andres Fernando T Russi ◽  
Mike D Tokach ◽  
Jason C Woodworth ◽  
Joel M DeRouchey ◽  
Robert D Goodband ◽  
...  

Abstract The swine industry has been constantly evolving to select animals with improved performance traits and to minimize variation in body weight (BW) in order to meet packer specifications. Therefore, understanding variation presents an opportunity for producers to find strategies that could help reduce, manage, or deal with variation of pigs in a barn. A systematic review and meta-analysis was conducted by collecting data from multiple studies and available data sets in order to develop prediction equations for coefficient of variation (CV) and standard deviation (SD) as a function of BW. Information regarding BW variation from 16 papers was recorded to provide approximately 204 data points. Together, these data included 117,268 individually weighed pigs with a sample size that ranged from 104 to 4,108 pigs. A random-effects model with study used as a random effect was developed. Observations were weighted using sample size as an estimate for precision on the analysis, where larger data sets accounted for increased accuracy in the model. Regression equations were developed using the nlme package of R to determine the relationship between BW and its variation. Polynomial regression analysis was conducted separately for each variation measurement. When CV was reported in the data set, SD was calculated and vice versa. The resulting prediction equations were: CV (%) = 20.04 – 0.135 × (BW) + 0.00043 × (BW)2, R2=0.79; SD = 0.41 + 0.150 × (BW) - 0.00041 × (BW)2, R2 = 0.95. These equations suggest that there is evidence for a decreasing quadratic relationship between mean CV of a population and BW of pigs whereby the rate of decrease is smaller as mean pig BW increases from birth to market. Conversely, the rate of increase of SD of a population of pigs is smaller as mean pig BW increases from birth to market.


Author(s):  
Christian Luksch ◽  
Lukas Prost ◽  
Michael Wimmer

We present a real-time rendering technique for photometric polygonal lights. Our method uses a numerical integration technique based on a triangulation to calculate noise-free diffuse shading. We include a dynamic point in the triangulation that provides a continuous near-field illumination resembling the shape of the light emitter and its characteristics. We evaluate the accuracy of our approach with a diverse selection of photometric measurement data sets in a comprehensive benchmark framework. Furthermore, we provide an extension for specular reflection on surfaces with arbitrary roughness that facilitates the use of existing real-time shading techniques. Our technique is easy to integrate into real-time rendering systems and extends the range of possible applications with photometric area lights.


Author(s):  
Soi Avgeridou ◽  
Ilija Djordjevic ◽  
Anton Sabashnikov ◽  
Kaveh Eghbalzadeh ◽  
Laura Suhr ◽  
...  

AbstractExtracorporeal membrane oxygenation (ECMO) plays an important role as a life-saving tool for patients with therapy-refractory cardio-respiratory failure. Especially, for rare and infrequent indications, scientific data is scarce. The conducted paper focuses primarily on our institutional experience with a 19-year-old patient suffering an acute chest syndrome, a pathognomonic pulmonary condition presented by patients with sickle cell disease. After implementation of awake ECMO therapy, the patient was successfully weaned off support and discharged home 22 days after initiation of the extracorporeal circulation. In addition to limited data and current literature, further and larger data sets are necessary to determine the outcome after ECMO therapy for this rare indication.


2021 ◽  
pp. 1-10
Author(s):  
Lipeng Si ◽  
Baolong Liu ◽  
Yanfang Fu

The important strategic position of military UAVs and the wide application of civil UAVs in many fields, they all mark the arrival of the era of unmanned aerial vehicles. At present, in the field of image research, recognition and real-time tracking of specific objects in images has been a technology that many scholars continue to study in depth and need to be further tackled. Image recognition and real-time tracking technology has been widely used in UAV aerial photography. Through the analysis of convolution neural network algorithm and the comparison of image recognition technology, the convolution neural network algorithm is improved to improve the image recognition effect. In this paper, a target detection technique based on improved Faster R-CNN is proposed. The algorithm model is implemented and the classification accuracy is improved through Faster R-CNN network optimization. Aiming at the problem of small target error detection and scale difference in aerial data sets, this paper designs the network structure of RPN and the optimization scheme of related algorithms. The structure of Faster R-CNN is adjusted by improving the embedding of CNN and OHEM algorithm, the accuracy of small target and multitarget detection is improved as a whole. The experimental results show that: compared with LENET-5, the recognition accuracy of the proposed algorithm is significantly improved. And with the increase of the number of samples, the accuracy of this algorithm is 98.9%.


Author(s):  
Julian Prell ◽  
Christian Scheller ◽  
Sebastian Simmermacher ◽  
Christian Strauss ◽  
Stefan Rampp

Abstract Objective The quantity of A-trains, a high-frequency pattern of free-running facial nerve electromyography, is correlated with the risk for postoperative high-grade facial nerve paresis. This correlation has been confirmed by automated analysis with dedicated algorithms and by visual offline analysis but not by audiovisual real-time analysis. Methods An investigator was presented with 29 complete data sets measured during actual surgeries in real time and without breaks in a random order. Data were presented either strictly via loudspeaker (audio) or simultaneously by loudspeaker and computer screen (audiovisual). Visible and/or audible A-train activity was then quantified by the investigator with the computerized equivalent of a stopwatch. The same data were also analyzed with quantification of A-trains by automated algorithms. Results Automated (auto) traintime (TT), known to be a small, yet highly representative fraction of overall A-train activity, ranged from 0.01 to 10.86 s (median: 0.58 s). In contrast, audio-TT ranged from 0 to 1,357.44 s (median: 29.69 s), and audiovisual-TT ranged from 0 to 786.57 s (median: 46.19 s). All three modalities were correlated to each other in a highly significant way. Likewise, all three modalities correlated significantly with the extent of postoperative facial paresis. As a rule of thumb, patients with visible/audible A-train activity < 1 minute presented with a more favorable clinical outcome than patients with > 1 minute of A-train activity. Conclusion Detection and even quantification of A-trains is technically possible not only with intraoperative automated real-time calculation or postoperative visual offline analysis, but also with very basic monitoring equipment and real-time good quality audiovisual analysis. However, the investigator found audiovisual real-time-analysis to be very demanding; thus tools for automated quantification can be very helpful in this respect.


Sign in / Sign up

Export Citation Format

Share Document