scholarly journals Effects of Coculture Fibroblasts and Vascular Endothelial Cells on Proliferation and Osteogenesis of Adipose Stem Cells

2022 ◽  
Vol 2022 ◽  
pp. 1-11
Author(s):  
Xinyu Liao ◽  
Ruiying Zhong ◽  
Hong Zhang ◽  
Fuke Wang

Background. The development of tissue engineering provides a new method for the clinical treatment of bone defects, but the problems of slow formation and slow vascularization of tissue engineered bone have always existed. Studies have shown that the combined culture system of vascular endothelial cells and adipose stem cells is superior to single cell in repairing bone defects. With the excellent proliferation ability, secretion of synthetic collagen and a variety of regulatory factors and fibroblasts can differentiate into osteoblasts and have the potential to be excellent seed cells involved in tissue engineering bone construction. Objective. To investigate the effects of combined culture of fibroblasts, vascular endothelial cells, and adipose stem cells on proliferation and osteogenic differentiation of adipose stem cells. Methods. The cells were divided into 4 groups: adipose stem cell group, adipose stem cell+vascular endothelial cell coculture group, adipose stem cell+fibroblast coculture group, and adipose stem cell+vascular endothelial cell+fibroblast coculture group. The morphological changes of the cells were observed under an inverted microscope. After 1, 3, 5, 7, and 9 days of coculture, the proliferation of adipose stem cells in each group was detected by a CCK-8 method and the growth curve was plotted. Adipose stem cells in each group were stained with alizarin red and alkaline phosphatase at days 7, 14, 21, and 28. At the third week of coculture, Western blot was used to detect the expression level of bone morphogenetic protein 2 of adipose stem cells in each group. Results and Conclusions. (1) After 14 days of culture, some cells in the adipose stem cell+vascular endothelial cell+fibroblast coculture group fused into clumps and distributed in nests, while the adipose stem cells in the adipose stem cell group had a single cell morphology and no cell clusters were observed. (2) The cell growth curves were basically the same in each group, and the absorbance value increased gradually. The absorbance value of the adipocyte+vascular endothelial cell+fibroblast coculture group was the highest, followed by the adipocyte+fibroblast coculture group and then the adipocyte+fibroblast coculture group. (3) Alizarin red staining showed negative reaction in each group on the 7th day, and a small number of red positive cells gradually appeared in each group as time went on. On the 28th day, red positive cells were found in all groups, and most of them were in the coculture group of adipose stem cells+vascular endothelial cells+fibroblasts, showing red focal. The coculture group of adipose stem cells+vascular endothelial cells and adipose stem cells+fibroblasts was less, and the adipose stem cell group was the least. On day 28 of alkaline phosphatase staining, cells in each group had red positive particles, and the adipose stem cell+vascular endothelial cell+fibroblast coculture group and adipose stem cell+fibroblast coculture group had the most, followed by the adipose stem cell+vascular endothelial cell coculture group and then the adipose stem cell group. (4) Bone morphogenetic protein 2 was expressed in all groups, especially in adipose stem cell+fibroblast coculture group and adipose stem cell+vascular endothelial cell+ fibroblast coculture group. (5) Fibroblast could promote adipose stem cell osteogenic differentiation better than vascular endothelial cells, but the proliferation effect was not as good as vascular endothelial cells. The coculture system of fibroblast combined with vascular endothelial cells and adipose stem cells promoted the proliferation of adipose stem cells and the rapid and efficient differentiation of adipose stem cells into osteoblasts.

1995 ◽  
Vol 74 (04) ◽  
pp. 1045-1049 ◽  
Author(s):  
P Butthep ◽  
A Bunyaratvej ◽  
Y Funahara ◽  
H Kitaguchi ◽  
S Fucharoen ◽  
...  

SummaryAn increased level of plasma thrombomodulin (TM) in α- and β- thalassaemia was demonstrated using an enzyme-linked immunosorbent assay (ELISA). Nonsplenectomized patients with β-thalassaemia/ haemoglobin E (BE) had higher levels of TM than splenectomized cases (BE-S). Patients with leg ulcers (BE-LU) were found to have the highest increase in TM level. Appearance of larger platelets in all types of thalassaemic blood was observed indicating an increase in the number of younger platelets. These data indicate that injury of vascular endothelial cells is present in thalassaemic patients.


Blood ◽  
2010 ◽  
Vol 115 (20) ◽  
pp. 4130-4137 ◽  
Author(s):  
Jinmin Gao ◽  
Lei Sun ◽  
Lihong Huo ◽  
Min Liu ◽  
Dengwen Li ◽  
...  

Cylindromatosis (CYLD) is a deubiquitinase that was initially identified as a tumor suppressor and has recently been implicated in diverse normal physiologic processes. In this study, we have investigated the involvement of CYLD in angiogenesis, the formation of new blood vessels from preexisting ones. We find that knockdown of CYLD expression significantly impairs angiogenesis in vitro in both matrigel-based tube formation assay and collagen-based 3-dimensional capillary sprouting assay. Disruption of CYLD also remarkably inhibits angiogenic response in vivo, as evidenced by diminished blood vessel growth into the angioreactors implanted in mice. Mechanistic studies show that CYLD regulates angiogenesis by mediating the spreading and migration of vascular endothelial cells. Silencing of CYLD dramatically decreases microtubule dynamics in endothelial cells and inhibits endothelial cell migration by blocking the polarization process. Furthermore, we identify Rac1 activation as an important factor contributing to the action of CYLD in regulating endothelial cell migration and angiogenesis. Our findings thus uncover a previously unrecognized role for CYLD in the angiogenic process and provide a novel mechanism for Rac1 activation during endothelial cell migration and angiogenesis.


2016 ◽  
Vol 310 (3) ◽  
pp. L249-L262 ◽  
Author(s):  
Andrew J. Bryant ◽  
Ryan P. Carrick ◽  
Melinda E. McConaha ◽  
Brittany R. Jones ◽  
Sheila D. Shay ◽  
...  

Pulmonary hypertension (PH) complicating chronic parenchymal lung disease, such as idiopathic pulmonary fibrosis, results in significant morbidity and mortality. Since the hypoxia-inducible factor (HIF) signaling pathway is important for development of pulmonary hypertension in chronic hypoxia, we investigated whether HIF signaling in vascular endothelium regulates development of PH related to pulmonary fibrosis. We generated a transgenic model in which HIF is deleted within vascular endothelial cells and then exposed these mice to chronic intraperitoneal bleomycin to induce PH associated with lung fibrosis. Although no differences in the degree of fibrotic remodeling were observed, we found that endothelial HIF-deficient mice were protected against development of PH, including right ventricle and pulmonary vessel remodeling. Similarly, endothelial HIF-deficient mice were protected from PH after a 4-wk exposure to normobaric hypoxia. In vitro studies of pulmonary vascular endothelial cells isolated from the HIF-targeted mice and controls revealed that endothelial HIF signaling increases endothelial cell expression of connective tissue growth factor, enhances vascular permeability, and promotes pulmonary artery smooth muscle cell proliferation and wound healing ability, all of which have the potential to impact the development of PH in vivo. Taken together, these studies demonstrate that vascular endothelial cell HIF signaling is necessary for development of hypoxia and pulmonary fibrosis associated PH. As such, HIF and HIF-regulated targets represent a therapeutic target in these conditions.


2020 ◽  
Vol 52 (2) ◽  
pp. 180-191 ◽  
Author(s):  
Qiaoli Chen ◽  
Xiaoye Li ◽  
Lingjun Kong ◽  
Qing Xu ◽  
Zi Wang ◽  
...  

Abstract Endothelial cell (EC) dysfunction represents an early key event in atherosclerosis. Recently, MicroRNAs have been demonstrated to regulate EC function. miR-101-3p has been discovered to regulate cell apoptosis and proliferation in cardiovascular diseases. Therefore, the aim of the current study was to clarify whether miR-101-3p regulates the dysfunction of vascular endothelial cells. In this study, the transfection of human umbilical vein endothelial cells (HUVECs) with miR-101-3p mimic induced reactive oxygen species (ROS) production, EC dysfunction, and activated nuclear factor-κB (NF-κB), whereas transfection with miR-101-3p inhibitor alleviated these events. The antioxidant N-acetylcysteine alleviated miR-101-3p-induced EC dysfunction. Moreover, we observed that miR-101-3p inhibited the expression of tet methylcytosine dioxygenase 2 (TET2) at the posttranscriptional level, resulting in increased ROS production and activated NF-κB. TET2 overexpression inhibited ROS production, EC dysfunction, and NF-κB activation in miR-101-3p-transfected HUVECs. These results indicate that miR-101-3p induces EC dysfunction by targeting TET2, which regulates ROS production, EC dysfunction, and NF-κB activation. Taken together, our current study reveals a novel pathway associated with EC dysfunction. The modulation of miR-101-3p and TET2 expression levels may serve as a potential target for therapeutic strategies for atherosclerosis.


2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Changyou Li ◽  
Siyuan Li ◽  
Changkai Jia ◽  
Lingling Yang ◽  
Zicheng Song ◽  
...  

Previous studies showed that several members of the S100A family are involved in neovascularization and tumor development. This study checked whether low concentrations of S100A8 or S100A9 has any effect on the behaviour of vascular endothelial cells. A human umbilical vascular endothelial cell (HUVEC) line was used to measure vascular endothelial cell bioactivity related to angiogenesis, such as cell proliferation, migration, and vessel formation. In the low concentration range up to 10 μg/mL, either each alone or in combination, S100A8 and S100A9 proteins promoted proliferation of HUVEC cells in a dose-dependent manner. The presence of both proteins in culture showed additive effects over each single protein. Both proteins enhanced HUVEC cells to migrate across the transwell membrane and to form tube-like structures on the Matrigel surface. When mixed in Matrigel and injected subcutaneously in Balb/c mice, both proteins increased vessel development in the gel plugs. Microarray assay of HUVEC cells treated with 10 μg/mL S100A8 revealed that ribosome pathway, pathogenicEscherichia coliinfection pathway, apoptosis, and stress response genes were modulated by S100A8 treatment. We propose that S100A8 and S100A9 proteins from either infiltrating inflammatory cells or tumor cells play an important role in the interplay among inflammation, angiogenesis, and tumorigenesis.


1997 ◽  
Vol 323 (2) ◽  
pp. 567-573 ◽  
Author(s):  
Ichiro WAKABAYASHI ◽  
Klaus GROSCHNER

Modulation by alkalosis of basal leak Ca2+ entry and store-depletion-induced Ca2+ entry was investigated in the vascular endothelial cell line ECV 304. Ca2+ entry was monitored as the increase in the intracellular free Ca2+ concentration ([Ca2+]i) induced by elevation of the extracellular Ca2+ concentration. When ECV 304 cells were challenged with 100 nM thapsigargin in nominally Ca2+-free solution, [Ca2+]i increased transiently, and the increase in [Ca2+]i during a subsequent cumulative elevation of extracellular Ca2+ (from nominally Ca2+-free up to 5 mM) was markedly enhanced compared with non-stimulated cells (i.e. basal Ca2+ leak). Prolonged elevation of the extracellular pH (pHo) from 7.4 to 7.9 did not affect resting [Ca2+]i or the thapsigargin-induced [Ca2+]i transient evoked in nominally Ca2+-free solution, but increased leak Ca2+ entry as well as store-depletion-activated Ca2+ entry significantly. Basal Ca2+ leak and store-depletion-activated Ca2+ entry were enhanced either by acute elevation of pHo from 7.4 to 7.9 or by chronic alkalosis (pHo = 7.9). Stimulation of Ca2+ entry by extracellular alkalosis was observed both in normal and in high extracellular K+ (110 mM) solution, suggesting that the effects of alkalosis are independent of membrane potential. The intracellular pH (pHi) increased slightly during both acute and chronic extracellular alkalosis (from 7.22±0.01 to 7.37±0.04 and 7.45±0.05 respectively). Elevation of pHi to 7.60±0.06 at constant pHo by administration of 20 mM NH4Cl failed to stimulate, and in fact inhibited, store-depletion-activated Ca2+ entry. Our results demonstrate that a decrease in the extracellular but not the intracellular proton concentration promotes both basal and stimulated Ca2+ entry into endothelial cells.


Author(s):  
Maoxian Wang

Cystathionine gamma-lyase (CSE) is one of the essential H2S-producing enzymes, and it regulates diverse functions in connection with cardiovascular function. It is crucial how exogenous H2S regulates CSE expression of the vascular endothelial cell during hypoxia. We examined the transcription and expression of CSE in HUVECs regulated by exogenous H2S with 100 μM during hypoxia by Luciferase assay, Western blotting, and quantitative RT-qPCR. Exogenous H2S influenced on the promoter activity of CSE in HUVECs during hypoxia. The effects of 100 μM H2S on CSE mRNA expression in HUVECs is decreased compared with 0 μM H2S. The consequences of 100 μM H2S on the expression level of CSE protein in HUVECs at two h of hypoxia is reduced compared with 0 μM H2S. These findings suggest that vascular endothelial cells can respond to the signals of hypoxia in the blood, and can respond to changes in H2S concentration in the blood, thus affect the blood vessels themselves.


Sign in / Sign up

Export Citation Format

Share Document