scholarly journals Trichomonas vaginalisWeakens Human Amniochorion in an In Vitro Model of Premature Membrane Rupture

1995 ◽  
Vol 2 (6) ◽  
pp. 267-274 ◽  
Author(s):  
Deborah Draper ◽  
Ward Jones ◽  
R. Phillip Heine ◽  
Michelle Beutz ◽  
Janice I. French ◽  
...  

Objective: Trichomonas vaginalis (TV)infection is associated with preterm rupture of membranes (PROM) and preterm birth. We evaluated the effects ofTVgrowth and metabolism on preparations of human amniochorion to understand and characterize howTVmay impair fetal-membrane integrity and predispose to PROM and preterm birth.Methods:Term fetal membranes were evaluated using an established in vitro fetal-membrane model. FreshTVclinical isolates were obtained from pregnant women. The protozoa (5.0×105to1.5×106/ml) were incubated with fetal membranes in modified Diamond's medium for 20 h at 37°C in 5%CO2.The effects of fetal-membrane strength (bursting tension, work to rupture, and elasticity) were measured using a calibrated Wheatstone-bridge dynamometer. Tests were also performed to evaluate the effects of 1) inoculum size; 2) metronidazole (50 μg/ml); and 3) cell-free filtrate.Results:TheTV-induced membrane effects were 1) isolate variable; 2) inoculum dependent; 3) incompletely protected by metronidazole; and 4) mediated by both live organisms as well as protozoan-free culture filtrates. Six of 9 isolates significantly reduced the calculated work to rupture (P≤ 0.02); 7 of 9 reduced bursting tension; and 1 of 9 reduced elasticity. One isolate significantly increased the work to rupture and bursting tension (P≤ 0.002).Conclusions:In vitro incubation of fetal membranes withTVcan significantly impair the measures of fetal-membrane strength. This model may be used to delineate the mechanisms ofTV-induced membrane damage. This study suggests that there are enzyme-specific effects as well as pH effects.

2021 ◽  
Author(s):  
Corinne Belville ◽  
Flora Ponelle-Chachuat ◽  
Marion Rouzaire ◽  
Christelle Gross ◽  
Bruno Pereira ◽  
...  

The integrity of human fetal membranes is crucial for harmonious fetal development throughout pregnancy. Their premature rupture is often the consequence of a physiological phenomenon previously exacerbated. Beyond all biological processes implied, inflammation is of primary importance and is qualified as sterile at the end of pregnancy. Complementary methylomic and transcriptomic strategies on amnion and choriodecidua explants taken from the altered (cervix zone) and intact fetal membranes at term and before labor were used in this study. By cross-analyzing genome-wide studies strengthened by in vitro experiments, we deciphered how the expression of Toll-like receptor 4 (TLR4), a well-known actor of pathological fetal membrane rupture, is controlled. Indeed, it is differentially regulated in the altered zone and between both layers by a dual mechanism: 1) the methylation of TLR4 and miRNA promoters and 2) targeting by miRNA (let-7a-2 and miR-125b-1) acting on the 3-UTR of TLR4. Consequently, this study demonstrates that a fine regulation of TLR4 is required for sterile inflammation establishment at the end of pregnancy and that it may be dysregulated in the pathological premature rupture of membranes.


2020 ◽  
Vol 51 (4) ◽  
pp. 1038-1047
Author(s):  
Mawia & et al.

This study had as principal objective identification of osmotic-tolerant potato genotypes by using "in vitro" tissue culture and sorbitol as a stimulating agent, to induce water stress, which was added to the  culture nutritive medium in different concentration (0,50, 110, 220, 330 and 440 mM).  The starting point was represented by plantlets culture collection, belonging to eleven potato genotypes: Barcelona, Nectar, Alison, Jelly, Malice, Nazca, Toronto, Farida, Fabulla, Colomba and Spunta. Plantlets were multiplied between two internodes to obtain microcuttings (in sterile condition), which were inoculated on medium. Sorbitol-induced osmotic stress caused a significant reduction in the ascorbic acid, while the concentration of proline, H2O2 and solutes leakage increased compared with the control. Increased the proline content prevented lipid peroxidation, which played a pivotal role in the maintenance of membrane integrity under osmotic stress conditions. The extent of the cytoplasmic membrane damage depends on osmotic stress severity and the genotypic variation in the maintenance of membranes stability was highly associated with the ability of producing more amounts of osmoprotectants (proline) and the non-enzymic antioxidant ascorbic acid in response to osmotic stress level. The results showed that the genotypes Jelly, Nectar, Allison, Toronto, and Colomba are classified as highly osmotic stress tolerant genotypes, while the genotypes Nazca and Farida are classified as osmotic stress susceptible ones.


BMJ Open ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. e035186 ◽  
Author(s):  
Erica M Lokken ◽  
Kishorchandra Mandaliya ◽  
Sujatha Srinivasan ◽  
Barbra A Richardson ◽  
John Kinuthia ◽  
...  

IntroductionBacterial vaginosis (BV) and vaginal microbiota disruption during pregnancy are associated with increased risk of spontaneous preterm birth (SPTB), but clinical trials of BV treatment during pregnancy have shown little or no benefit. An alternative hypothesis is that vaginal bacteria present around conception may lead to SPTB by compromising the protective effects of cervical mucus, colonising the endometrial surface before fetal membrane development, and causing low-level inflammation in the decidua, placenta and fetal membranes. This protocol describes a prospective case-cohort study addressing this hypothesis.Methods and analysisHIV-seronegative Kenyan women with fertility intent are followed from preconception through pregnancy, delivery and early postpartum. Participants provide monthly vaginal specimens during the preconception period for vaginal microbiota assessment. Estimated date of delivery is determined by last menstrual period and first trimester obstetrical ultrasound. After delivery, a swab is collected from between the fetal membranes. Placenta and umbilical cord samples are collected for histopathology. Broad-range 16S rRNA gene PCR and deep sequencing of preconception vaginal specimens will assess species richness and diversity in women with SPTB versus term delivery. Concentrations of key bacterial species will be compared using quantitative PCR (qPCR). Taxon-directed qPCR will also be used to quantify bacteria from fetal membrane samples and evaluate the association between bacterial concentrations and histopathological evidence of inflammation in the fetal membranes, placenta and umbilical cord.Ethics and disseminationThis study was approved by ethics committees at Kenyatta National Hospital and the University of Washington. Results will be disseminated to clinicians at study sites and partner institutions, presented at conferences and published in peer-reviewed journals. The findings of this study could shift the paradigm for thinking about the mechanisms linking vaginal microbiota and prematurity by focusing attention on the preconception vaginal microbiota as a mediator of SPTB.


2021 ◽  
Vol 4 (4) ◽  
pp. 71
Author(s):  
Stefano Maggi ◽  
Alberto Ferrari ◽  
Korotoum Yabre ◽  
Aleksandra Anna Bonini ◽  
Claudio Rivetti ◽  
...  

A large number of bacterial toxin–antitoxin (TA) systems have been identified so far and different experimental approaches have been explored to investigate their activity and regulation both in vivo and in vitro. Nonetheless, a common feature of these methods is represented by the difficulty in cell transformation, culturing, and stability of the transformants, due to the expression of highly toxic proteins. Recently, in dealing with the type I Lpt/RNAII and the type II YafQ/DinJ TA systems, we encountered several of these problems that urged us to optimize methodological strategies to study the phenotype of recombinant Escherichia coli host cells. In particular, we have found conditions to tightly repress toxin expression by combining the pET expression system with the E. coli C41(DE3) pLysS strain. To monitor the RNase activity of the YafQ toxin, we developed a fluorescence approach based on Thioflavin-T which fluoresces brightly when complexed with bacterial RNA. Fluorescence microscopy was also applied to reveal loss of membrane integrity associated with the activity of the type I toxin Lpt, by using DAPI and ethidium bromide to selectively stain cells with impaired membrane permeability. We further found that atomic force microscopy can readily be employed to characterize toxin-induced membrane damages.


2012 ◽  
Vol 111 (suppl_1) ◽  
Author(s):  
Thomas J O'Neill ◽  
Kaitlin Lenhart ◽  
Jason Doherty ◽  
Mauricio Rojas ◽  
Mack P Christopher ◽  
...  

Cardiac myocytes are unique in their requirement to sustain continuous repetitive contraction in the setting of intense mechanical stress while simultaneously maintaining high membrane integrity for an appropriate electrical gradient. The consequence of failure of the membrane repair response has been highlighted in recent reports linking cardiomyocyte membrane fragility with cardiac degeneration in patients as well as in their analogous mouse models. Herein, we describe a novel role for GTPase activator for Rho associated with Focal Adhesion Kinase (GRAF) in regulating cardiomyocyte membrane integrity. We previously published that disruption of GRAF in Xenopus laevis resulted in progressive skeletal muscle degeneration. We now show that GRAF-depleted tadpoles exhibit defective cardiac formation and function. Interestingly, damage of muscle cells in vivo and in vitro led to a translocation of GRAF to the sarcolemma, suggesting that GRAF may be an important component of the cardiac membrane repair machinery. To further explore this possibility, we generated GRAF hypomorphic mice that exhibit greater than 99% reduction of endogenous GRAF expression. While GRAF deficient mice show normal Mendelian birth distribution and are viable, they exhibit a modest skeletal muscle pathology. Although baseline cardiac integrity was not compromised in GRAF deficient mice, treatment either with cardiotoxin or intraperitoneal injection of isoproterenol led to elevated cardiomyocyte membrane damage (assessed by Evan’s blue dye uptake) in GRAF deficient compared to control mice (19% vs 2% of myocytes within afflicted ventricular area for cardiotoxin, 18% vs 8% for isoproterenol respectively). Moreover, cultured GRAF null myocytes exhibited a significantly attenuated membrane resealing response following laser-mediated disruption compared to GRAF-containing control cells as assessed by accumulation of the membrane impermeable dye, FM-143. As well, the survival rate after injury of GRAF-deficient cells was markedly attenuated (20% vs 85% in control cells). While cardiac cell membrane damage is likely a frequent and important event, the repair process is currently understudied, and this is the first report to implicate a Rho regulator in this response.


2002 ◽  
Vol 87 (3) ◽  
pp. 1353-1361 ◽  
Author(s):  
Ping Xu ◽  
Nadia Alfaidy ◽  
John R. G. Challis

Extensive extracellular matrix (ECM) remodeling is found in many processes during human parturition at term and preterm. These include cervical ripening, fetal membrane rupture, and placental detachment from the maternal uterus. Matrix metalloproteinases (MMPs) are the main mediators of ECM degradation. The present study was designed to investigate the expression of MMP-2 and MMP-9 in human fetal membranes (FMs) and placental (PL) tissues with or without labor at preterm and term parturition. Both zymography and Western blot analysis showed that MMP-9 was significantly (P < 0.01) increased in preterm and term labor FM, compared with nonlabor. Term labor PL also had a much higher (P < 0.05) level of MMP-9 than that of term nonlabor. No significant difference in MMP-2 expression was found between labor and nonlabor tissues. Immunolocalization studies revealed a specific distribution pattern for MMP-2 and MMP-9. MMP-2 was localized to the amnion mesenchyme, chorion laeve trophoblast, decidua parietalis, and blood vessels in PL villi. MMP-9 was localized mainly to amnion epithelia, chorion laeve trophoblast, decidua parietalis, and PL syncytiotrophoblasts. Separate cell culture from different layers of FM and culture of purified PL trophoblast cells showed that PL syncytiotrophoblast and amnion epithelial cells exclusively produced MMP-9; chorion trophoblast cells secreted both MMP-2 and MMP-9, but amnion mesenchymal cells produced only MMP-2. We concluded that MMP-2 and MMP-9 exhibited cell-specific expression in the human PL. An increase in MMP-9 expression may contribute to degradation of the ECM in the FM and PL, thereby facilitating FM rupture and PL detachment from the maternal uterus at labor, both preterm and term.


Sign in / Sign up

Export Citation Format

Share Document