scholarly journals Numerical Calculation of Anisotropic Absorption Factors for Lamellar Two-Phase Structures

1990 ◽  
Vol 12 (4) ◽  
pp. 199-217
Author(s):  
Y. S. Liu ◽  
H. J. Bunge

X-ray diffraction in a lamellar two-phase material is considered. If the lamellae thicknesses are small compared with the penetration depth of the X-rays then the absorption factor depends on the whole path of incident and reflected beam in both phases. Particularly, it depends on a rotation γ about the diffraction vector s additional to the orientation (αβ) of this vector with respect to the sample. Numerical calculations of the absorption factor A(αβγ) have been carried out for different values of lamellae thicknesses D1D2, absorption coefficients μ1μ2 and lamellae orientations ωρ with respect to the sample surface.

1986 ◽  
Vol 6 (4) ◽  
pp. 265-287 ◽  
Author(s):  
H. J. Bunge

The crystallographic orientation distribution and the geometrical lamellae orientation distribution in lamellar eutectics are, in general, not independent of each other. The combined orientation-lamellae distribution function depends on five angular parameters. X-ray diffraction in such eutectics may exhibit an anisotropic macroscopic absorption factor if the penetration depth of the X-rays is large compared with their planar size. As a consequence, the reflected X-ray intensity may depend on a third angle γ, i.e. a rotation of the sample about the diffraction vector s additionally to the usual pole figure angles α, β which describe the orientation of the diffraction vector s with respect to the sample coordinate system. It is thus necessary to measure three-dimensional generalized pole figures instead of conventional two-dimensional ones.


1990 ◽  
Vol 34 ◽  
pp. 325-335 ◽  
Author(s):  
Steve J. Chipera ◽  
David L. Bish

AbstractThe mass absorption coefficient is a useful parameter for quantitative characterization of materials. If the chemical composition of a sample is known, the mass absorption coefficient can be calculated directly. However, the mass absorption coefficient must be determined empirically if the chemical composition is unknown. Traditional methods for determining the mass absorption coefficient involve measuring the transmission of monochromatic X-rays through a sample of known thickness and density. Reynolds (1963,1967), however, proposed a method for determining the mass absorption coefficient by measuring the Compton or inelastic X-ray scattering from a sample using Mo radiation on an X-ray fluorescence spectrometer (XRF). With the recent advances in solid-state detectors/electronics for use with conventional powder diffractometers, it is now possible to readily determine mass absorption coefficients during routine X-ray diffraction (XRD) analyses.Using Cu Kα radiation and Reynolds’ method on a Siemens D-500 diffractometer fitted with a Kevex Si(Li) solid-state detector, we have measured the mass absorption coefficients of a suite of minerals and pure chemical compounds ranging in μ/ρ from graphite to Fe-metal (μ/ρ = 4.6-308 using Cu Kα radiation) to ±4.0% (lσ). The relationship between the known mass absorption coefficient and the inverse count rate is linear with a correlation coefficient of 0.997. Using mass absorption coefficients, phase abundances can be determined during quantitative XRD analysis without requiring the use of an internal standard, even when an amorphous component is present.


1982 ◽  
Vol 26 ◽  
pp. 275-282 ◽  
Author(s):  
C.N.J. Wagner ◽  
M.S. Boldrick ◽  
V. Perez-Mendez

AbstractA ϕ-ψ diffractometer has been designed and constructed to evaluate residual stresses in polycrystalline samples by x-ray diffraction. It permits rotations of the x-ray diffraction apparatus, consisting of an x-ray tube and a position-sensitive proportional counter, about two axes ϕ and ψ. The ϕ-rotation from 0° to 360° is carried out about the normal to the surface of the stationary sample, whereas the ψ-motion consists of a rotation from -45° to +45° about an axis lying in the sample surface and the diffraction plane, but perpendicular to the diffraction vector. This ϕ-ψ diffractometer permits the application of the ϕ- and ψ-differential and integral methods for the evaluation of the strain tensor and its gradient averaged over the depth of x-ray penetration into the sample. Assuming that isotropic elasticity theory is applicable, the stress tensor can then be evaluated from the measured strain tensor.


1998 ◽  
Vol 5 (3) ◽  
pp. 902-904 ◽  
Author(s):  
Takashi Noma ◽  
Atsuo Iida

An X-ray diffraction technique using a hard X-ray microbeam for thin-film analysis has been developed. To optimize the spatial resolution and the surface sensitivity, the X-ray microbeam strikes the sample surface at a large glancing angle while the diffracted X-ray signal is detected with a small (grazing) exit angle. Kirkpatrick–Baez optics developed at the Photon Factory were used, in combination with a multilayer monochromator, for focusing X-rays. The focused beam size was about 10 × 10 µm. X-ray diffraction patterns of Pd, Pt and their layered structure were measured. Using a small exit angle, the signal-to-background ratio was improved due to a shallow escape depth. Under the grazing-exit condition, the refraction effect of diffracted X-rays was observed, indicating the possibility of surface sensitivity.


2002 ◽  
Vol 35 (2) ◽  
pp. 87-98 ◽  
Author(s):  
B. K. Sokolov ◽  
L. P. Vladimirov ◽  
L. I. Anisimova ◽  
A. B. Makarov

A peculiar relief generally appears on the sample surface while testing wear resistance, which impairs the results of texture analysis by X-ray diffraction methods. The main reason for this is screening influence of the surface roughness on the X-ray passing through. From model representations, the influence on the screening of the relief parameters and the characteristic angle of reflection of X-rays is shown. Distribution of the parameters of a relief that actually forms is analyzed. A computer-assisted method of calculation of pole figures that excludes the screening effect is suggested. As an example of the method of application, the results of the analysis of textures that form upon testing wear resistance under condition of dry friction by slipping in pairs of samples of the β-titanium alloy VT35 doped with hydrogen are presented.


Author(s):  
W. Z. Chang ◽  
D. B. Wittry

Since Du Mond and Kirkpatrick first discussed the principle of a bent crystal spectrograph in 1930, curved single crystals have been widely utilized as spectrometric monochromators as well as diffractors for focusing x rays diverging from a point. Curved crystal diffraction theory predicts that the diffraction parameters - the rocking curve width w, and the peak reflection coefficient r of curved crystals will certainly deviate from those of their flat form. Due to a lack of curved crystal parameter data in current literature and the need for optimizing the choice of diffraction geometry and crystal materials for various applications, we have continued the investigation of our technique presented at the last conference. In the present abstract, we describe a more rigorous and quantitative procedure for measuring the parameters of curved crystals.The diffraction image of a singly bent crystal under study can be obtained by using the Johann geometry with an x-ray point source.


Author(s):  
A.J. Tousimis

An integral and of prime importance of any microtopography and microanalysis instrument system is its electron, x-ray and ion detector(s). The resolution and sensitivity of the electron microscope (TEM, SEM, STEM) and microanalyzers (SIMS and electron probe x-ray microanalyzers) are closely related to those of the sensing and recording devices incorporated with them.Table I lists characteristic sensitivities, minimum surface area and depth analyzed by various methods. Smaller ion, electron and x-ray beam diameters than those listed, are possible with currently available electromagnetic or electrostatic columns. Therefore, improvements in sensitivity and spatial/depth resolution of microanalysis will follow that of the detectors. In most of these methods, the sample surface is subjected to a stationary, line or raster scanning photon, electron or ion beam. The resultant radiation: photons (low energy) or high energy (x-rays), electrons and ions are detected and analyzed.


Author(s):  
M. E. Twigg ◽  
B. R. Bennett ◽  
J. R. Waterman ◽  
J. L. Davis ◽  
B. V. Shanabrook ◽  
...  

Recently, the GaSb/InAs superlattice system has received renewed attention. The interest stems from a model demonstrating that short period Ga1-xInxSb/InAs superlattices will have both a band gap less than 100 meV and high optical absorption coefficients, principal requirements for infrared detector applications. Because this superlattice system contains two species of cations and anions, it is possible to prepare either InSb-like or GaAs-like interfaces. As such, the system presents a unique opportunity to examine interfacial properties.We used molecular beam epitaxy (MBE) to prepare an extensive set of GaSb/InAs superlattices grown on an GaSb buffer, which, in turn had been grown on a (100) GaAs substrate. Through appropriate shutter sequences, the interfaces were directed to assume either an InSb-like or GaAs-like character. These superlattices were then studied with a variety of ex-situ probes such as x-ray diffraction and Raman spectroscopy. These probes confirmed that, indeed, predominantly InSb-like and GaAs-like interfaces had been achieved.


2014 ◽  
Vol 975 ◽  
pp. 207-212
Author(s):  
Dayse I. dos Santos ◽  
Olayr Modesto Jr. ◽  
Luis Vicente A. Scalvi ◽  
Americo S. Tabata

Metal oxide nanocomposites were prepared by two different routes: polyol and sol-gel. Characterization by X ray diffraction showed that the first process produces directly a two-phase material, while the sol-gel powder never showed second phase below 600°C. Light spectroscopy of the treated powders indicated similarities for the processed materials. Although the overall material compositions are about the same, different structural characteristics are found for each processing. With the exception of Ti-Zn materials, all the double metal oxide powders showed higher absorbance than either TiO2 powder.


2001 ◽  
Vol 15 (18) ◽  
pp. 2491-2497 ◽  
Author(s):  
J. L. ZHU ◽  
L. C. CHEN ◽  
R. C. YU ◽  
F. Y. LI ◽  
J. LIU ◽  
...  

In situ high pressure energy dispersive X-ray diffraction measurements on layered perovskite-like manganate Ca 3 Mn 2 O 7 under pressures up to 35 GPa have been performed by using diamond anvil cell with synchrotron radiation. The results show that the structure of layered perovskite-like manganate Ca 3 Mn 2 O 7 is unstable under pressure due to the easy compression of NaCl-type blocks. The structure of Ca 3 Mn 2 O 7 underwent two phase transitions under pressures in the range of 0~35 GPa. One was at about 1.3 GPa with the crystal structure changing from tetragonal to orthorhombic. The other was at about 9.5 GPa with the crystal structure changing from orthorhombic back to another tetragonal.


Sign in / Sign up

Export Citation Format

Share Document