Protein Expression Profiles in Pancreatic Adenocarcinoma Compared with Normal Pancreatic Tissue and Tissue Affected by Pancreatitis as Detected by Two-Dimensional Gel Electrophoresis and Mass Spectrometry

2004 ◽  
Vol 64 (24) ◽  
pp. 9018-9026 ◽  
Author(s):  
Jianjun Shen ◽  
Maria D. Person ◽  
Jijiang Zhu ◽  
James L. Abbruzzese ◽  
Donghui Li
2004 ◽  
Vol 100 (2) ◽  
pp. 302-308 ◽  
Author(s):  
Carsten D. Fütterer ◽  
Martin H. Maurer ◽  
Anne Schmitt ◽  
Robert E. Feldmann ◽  
Wolfgang Kuschinsky ◽  
...  

Background Volatile anesthetics disappear from an organism after the end of anesthesia. Whether changes of protein expression persist in the brain for a longer period is not known. This study investigates the question of whether the expression of proteins is altered in the rat brain after the end of desflurane anesthesia. Methods Three groups (n = 12 each) of rats were anesthetized with 5.7% desflurane in air for 3 h. Brains were removed directly after anesthesia, 24 h after anesthesia, or 72 h after anesthesia. Two additional groups (n = 12 each) served as naive conscious controls, in which the brains were removed without previous anesthesia 3 or 72 h after the start of the experiment. Cytosolic proteins were isolated. A proteome-wide study was performed, based on two-dimensional gel electrophoresis and mass spectrometry. Results Compared with conscious controls, significant (P < 0.05) increase/decrease was found: 3 h of anesthesia, 5/2 proteins; 24 h after anesthesia, 13/1 proteins; 72 h after anesthesia, 6/4 proteins. The overall changes in protein expression as quantified by the induction factor ranged from -1.67 (decrease to 60%) to 1.79 (increase by 79%) compared with the controls (100%). Some of these regulated proteins play a role in vesicle transport and metabolism. Conclusion Desflurane anesthesia produces changes in cytosolic protein expression up to 72 h after anesthesia in the rat brain, indicating yet unknown persisting effects.


Author(s):  
Fatemeh Nasri ◽  
Maryam Zare ◽  
Mehrnoosh Doroudchi ◽  
Behrouz Gharesi-Fard

Background: Polycystic ovary syndrome (PCOS) is the most frequent endocrine disorder affecting 6–7% of premenopausal women. Recent studies revealed that the immune system especially CD4+ T helper cells are important in the context PCOS. Proteome analysis of CD4+ T lymphocytes can provide valuable information regarding the biology of these cells in the context of PCOS. Objective: To investigate immune dysregulation in CD4+ T lymphocytes at the protein level in the context of PCOS using two-dimensional gel electrophoresis (2DE) and mass spectrometry (MS). Methods: In the present study, we applied two-dimensional gel electrophoresis / mass spectrometry to identify proteins differentially expressed by peripheral blood CD4+ T cells in ten PCOS women compared with ten healthy women. Western blot technique was used to confirm the identified proteins. Results: Despite the overall proteome similarities, there were significant differences in the expression of seven spots between two groups (P <0.05). Three proteins, namely phosphatidylethanolamine-binding protein 1, proteasome activator complex subunit 1 and triosephosphate isomerase 1 were successfully identified by Mass technique and confirmed by western blot. All characterized proteins were over-expressed in CD4+ T cells from patients compared to CD4+ T cells from controls (P <0.05). In-silico analysis suggested that the over-expressed proteins interact with other proteins involved in cellular metabolism especially glycolysis and ferroptosis pathway. Conclusion: These findings suggest that metabolic adjustments in CD4+ T lymphocytes, which is in favor of increased glycolysis and Th2 differentiation are important in the context of PCOS.


2014 ◽  
Vol 5 (1) ◽  
Author(s):  
Hakme Lee ◽  
Wesley M. Garrett ◽  
Joseph Sullivan ◽  
Irwin Forseth ◽  
Savithiry S. Natarajan

Certain plant species respond to light, dark, and other environmental factors by leaf movement. Leguminous plants both track and avoid the sun through turgor changes of the pulvinus tissue at the base of leaves. Mechanisms leading to pulvinar turgor flux, particularly knowledge of the proteins involved, are not well-known. In this study we used two-dimensional gel electrophoresis and liquid chromatography-tandom mass spectrometry to separate and identify the proteins located in the soybean pulvinus. A total of 183 spots were separated and 195 proteins from 165 spots were identified and functionally analyzed using single enrichment analysis for gene ontology terms. The most significant terms were related to proton transport. Comparison with guard cell proteomes revealed similar significant processes but a greater number of pulvinus proteins are required for comparable analysis. To our knowledge, this is a novel report on the analysis of proteins found in soybean pulvinus. These findings provide a better understanding of the proteins required for turgor change in the pulvinus.


2012 ◽  
Vol 444 (2) ◽  
pp. 169-181 ◽  
Author(s):  
Jay J. Thelen ◽  
Ján A. Miernyk

A newcomer to the -omics era, proteomics, is a broad instrument-intensive research area that has advanced rapidly since its inception less than 20 years ago. Although the ‘wet-bench’ aspects of proteomics have undergone a renaissance with the improvement in protein and peptide separation techniques, including various improvements in two-dimensional gel electrophoresis and gel-free or off-gel protein focusing, it has been the seminal advances in MS that have led to the ascension of this field. Recent improvements in sensitivity, mass accuracy and fragmentation have led to achievements previously only dreamed of, including whole-proteome identification, and quantification and extensive mapping of specific PTMs (post-translational modifications). With such capabilities at present, one might conclude that proteomics has already reached its zenith; however, ‘capability’ indicates that the envisioned goals have not yet been achieved. In the present review we focus on what we perceive as the areas requiring more attention to achieve the improvements in workflow and instrumentation that will bridge the gap between capability and achievement for at least most proteomes and PTMs. Additionally, it is essential that we extend our ability to understand protein structures, interactions and localizations. Towards these ends, we briefly focus on selected methods and research areas where we anticipate the next wave of proteomic advances.


2020 ◽  
Author(s):  
Simon Ngao Mule ◽  
Andrè Guillherme da Costa Martins ◽  
Livia Rosa-Fernandes ◽  
Gilberto Santos de Oliveira ◽  
Carla Monadeli Rodrigues ◽  
...  

AbstractThe etiological agent of Chagas disease, Trypanosoma cruzi, is subdivided into seven genetic subdivisions termed discrete typing units (DTUs), TcI-TcVI and Tcbat. The relevance of T. cruzi genetic diversity to the variable clinical course of the disease, virulence, pathogenicity, drug resistance, transmission cycles and ecological distribution justifies the concerted efforts towards understanding the population structure of T. cruzi strains. In this study, we introduce a novel approach termed ‘phyloquant’ to infer the evolutionary relationships and assignment of T. cruzi strains to their DTUs based on differential protein expression profiles evidenced by bottom up large scale mass spectrometry-based quantitative proteomic features. Mass spectrometry features analyzed using parsimony (MS1, iBAQ and LFQ) showed a close correlation between protein expression and T. cruzi DTUs and closely related trypanosome species. Although alternative topologies with minor differences between the three MS features analyzed were demonstrated, we show congruence to well accepted evolutionary relationships of T. cruzi DTUs; in all analyses TcI and Tcbat were sister groups, and the parental nature of genotype TcII and the hybrid genotypes TcV/TcVI were corroborated. Character mapping of genetic distance matrices based on phylogenetics and phyloquant clustering showed statistically significant correlations. We propose the first quantitative shotgun proteomics approach as a complement strategy to the genetic-based assignment of T. cruzi strains to DTUs and evolutionary inferences. Moreover, this approach allows for the identification of differentially regulated and strain/DTU/species-specific proteins, with potential application in the identification of strain/DTU specific biomarkers and candidate therapeutic targets. In addition, the correlation between multi-gene protein expression and divergence of trypanosome species was evaluated, adding another level to understand the genetic subdivisions among T. cruzi DTUs.


Sign in / Sign up

Export Citation Format

Share Document