scholarly journals Androgenic Control of Transforming Growth Factor-β Signaling in Prostate Epithelial Cells through Transcriptional Suppression of Transforming Growth Factor-β Receptor II

2008 ◽  
Vol 68 (19) ◽  
pp. 8173-8182 ◽  
Author(s):  
Kyung Song ◽  
Hui Wang ◽  
Tracy L. Krebs ◽  
Seong-Jin Kim ◽  
David Danielpour
2001 ◽  
Vol 12 (3) ◽  
pp. 675-684 ◽  
Author(s):  
Jules J.E. Doré ◽  
Diying Yao ◽  
Maryanne Edens ◽  
Nandor Garamszegi ◽  
Elizabeth L. Sholl ◽  
...  

Transforming growth factor-βs (TGF-β) are multifunctional proteins capable of either stimulating or inhibiting mitosis, depending on the cell type. These diverse cellular responses are caused by stimulating a single receptor complex composed of type I and type II receptors. Using a chimeric receptor model where the granulocyte/monocyte colony-stimulating factor receptor ligand binding domains are fused to the transmembrane and cytoplasmic signaling domains of the TGF-β type I and II receptors, we wished to describe the role(s) of specific amino acid residues in regulating ligand-mediated endocytosis and signaling in fibroblasts and epithelial cells. Specific point mutations were introduced at Y182, T200, and Y249 of the type I receptor and K277 and P525 of the type II receptor. Mutation of either Y182 or Y249, residues within two putative consensus tyrosine-based internalization motifs, had no effect on endocytosis or signaling. This is in contrast to mutation of T200 to valine, which resulted in ablation of signaling in both cell types, while only abolishing receptor down-regulation in fibroblasts. Moreover, in the absence of ligand, both fibroblasts and epithelial cells constitutively internalize and recycle the TGF-β receptor complex back to the plasma membrane. The data indicate fundamental differences between mesenchymal and epithelial cells in endocytic sorting and suggest that ligand binding diverts heteromeric receptors from the default recycling pool to a pathway mediating receptor down-regulation and signaling.


2008 ◽  
Vol 294 (1) ◽  
pp. R266-R275 ◽  
Author(s):  
Shigenobu Matsumura ◽  
Tetsuro Shibakusa ◽  
Teppei Fujikawa ◽  
Hiroyuki Yamada ◽  
Kiyoshi Matsumura ◽  
...  

Transforming growth factor-β (TGF-β), a pleiotropic cytokine, regulates cell proliferation, differentiation, and apoptosis, and plays a key role in development and tissue homeostasis. TGF-β functions as an anti-inflammatory cytokine because it suppresses microglia and B-lymphocyte functions, as well as the production of proinflammatory cytokines. However, we previously demonstrated that the intracisternal administration of TGF-β induces fever like that produced by proinflammatory cytokines. In this study, we investigated the mechanism of TGF-β-induced fever. The intracisternal administration of TGF-β increased body temperature in a dose-dependent manner. Pretreatment with cyclooxygenase-2 (COX-2)-selective inhibitor significantly suppressed TGF-β-induced fever. COX-2 is known as one of the rate-limiting enzymes of the PGE2 synthesis pathway, suggesting that fever induced by TGF-β is COX-2 and PGE2 dependent. TGF-β increased PGE2 levels in cerebrospinal fluid and increased the expression of COX-2 in the brain. Double immunostaining of COX-2 and von Willebrand factor (vWF, an endothelial cell marker) revealed that COX-2-expressing cells were mainly endothelial cells. Although not all COX-2-immunoreactive cells express TGF-β receptor, some COX-2-immunoreactive cells express activin receptor-like kinase-1 (ALK-1, an endothelial cell-specific TGF-β receptor), suggesting that TGF-β directly or indirectly acts on endothelial cells to induce COX-2 expression. These findings suggest a novel function of TGF-β as a proinflammatory cytokine in the central nervous system.


Sign in / Sign up

Export Citation Format

Share Document