Cell cycle phase progression analysis identifies unique replication phenotypes of major prognostic and predictive significance in cancer.

Author(s):  
M Loddo ◽  
SR Kingsbury ◽  
M Rashid ◽  
I Proctor ◽  
C Holt ◽  
...  
1979 ◽  
Vol 27 (1) ◽  
pp. 470-473 ◽  
Author(s):  
W Göhde ◽  
M Meistrich ◽  
R Meyn ◽  
J Schumann ◽  
D Johnston ◽  
...  

The effect of adriamycin on cell cycle phase progression of CHO cells synchronized into the various phases of the cell cycle by elutriation was investigated by high resolution pulse cytophotometry. Cells treated in all phases of the cell cycle showed delay in their subsequent progression. In addition to the wellknown block of cells in the G2-phase, a delay in passage of cells from G1 to S and a decreased rate of transit through the S-phase were observed. A broadening of the DNA distributions of the treated cells was observed after cell division indicating induction of chromosomal abnormalities.


2000 ◽  
Vol 118 (4) ◽  
pp. A736-A737
Author(s):  
Zun-Wu Zhang ◽  
Nick Dorrell ◽  
Brendan W. Wren ◽  
Michael J. Farthing

2009 ◽  
Vol 100 (6) ◽  
pp. 959-970 ◽  
Author(s):  
M Loddo ◽  
S R Kingsbury ◽  
M Rashid ◽  
I Proctor ◽  
C Holt ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Christophe Desterke ◽  
Annelise Bennaceur-Griscelli ◽  
Ali G. Turhan

Abstract Background During aging, hematopoietic stem cells (HSC) lose progressively both their self-renewal and differentiation potential. The precise molecular mechanisms of this phenomenon are not well established. To uncover the molecular events underlying this event, we have performed a bioinformatics analysis of 650 single-cell transcriptomes. Methods Single-cell transcriptome analyses of expression heterogeneity, cell cycle, and cell trajectory in human cell compartment enriched in hematopoietic stem cell compartment were investigated in the bone marrow according to the age of the donors. Identification of aging-related nodules was identified by weighted correlation network analysis in this primitive compartment. Results The analysis of single-cell transcriptomes allowed to uncover a major upregulation of EGR1 in human-aged lineage−CD34+CD38− cells which present cell cycle dysregulation with reduction of G2/M phase according to less expression of CCND2 during S phase. EGR1 upregulation in aging hematopoietic stem cells was found to be independent of cell cycle phases and gender. EGR1 expression trajectory in aged HSC highlighted a signature enriched in hematopoietic and immune disorders with the best induction of AP-1 complex and quiescence regulators such as EGR1, BTG2, JUNB, and NR41A. Sonic Hedgehog-related TMEM107 transmembrane molecule followed also EGR1 cell trajectory. EGR1-dependent gene weighted network analysis in human HSC-associated IER2 target protein-specific regulators of PP2A activity, IL1B, TNFSF10 ligands, and CD69, SELP membrane molecules in old HSC module with immune and leukemogenic signature. In contrast, for young HSC which were found with different cell cycle phase progression, its specific module highlighted upregulation of HIF1A hypoxic factor, PDE4B immune marker, DRAK2 (STK17B) T cell apoptosis regulator, and MYADM myeloid-associated marker. Conclusion EGR1 was found to be connected to the aging of human HSC and highlighted a specific cell trajectory contributing to the dysregulation of an inflammatory and leukemia-related transcriptional program in aged human HSCs. EGR1 and its program were found to be connected to the aging of human HSC with dissociation of quiescence property and cell cycle phase progression in this primitive hematopoietic compartment.


2017 ◽  
Author(s):  
Matthew E. Bechard ◽  
Eric D. Bankaitis ◽  
Alessandro Ustione ◽  
David W. Piston ◽  
Mark A. Magnuson ◽  
...  

AbstractNeurog3HI endocrine-committing cells are generated from a population of Sox9+ mitotic progenitors with only a low level of Neurog3 transcriptional activity (Neurog3TA.LO). Low-level Neurog3 protein, in Neurog3TA.LO cells, is required to maintain their mitotic endocrine-lineage-primed status. Herein, we describe a Neurog3-driven FUCCI cell-cycle reporter (Neurog3P2A.FUCCI) derived from a Neurog3 BAC transgenic reporter that functions as a loxed cassette acceptor (LCA). In cycling Sox9+ Neurog3TA.LO progenitors, the majority of cells in S-G2-M phases have undetectable levels of Neurog3 with increased expression of endocrine progenitor markers, while those in G1 have low Neurog3 levels with increased expression of endocrine differentiation markers. These findings support a model in which variations in Neurog3 protein levels are coordinated with cell-cycle phase progression in Neurog3TA.LO progenitors with entrance into G1 triggering a concerted effort, beyond increasing Neurog3 levels, to maintain an endocrine-lineage-primed state by initiating expression of the downstream endocrine differentiation program prior to endocrine-commitment.


1990 ◽  
Vol 52 (5) ◽  
pp. 986-992
Author(s):  
Takeshi KONO ◽  
Tsukasa TANII ◽  
Masayoshi FURUKAWA ◽  
Nobuyuki MIZUNO ◽  
Shoji TANIGUCHI ◽  
...  

1996 ◽  
Vol 88 (1-2) ◽  
pp. 82-82a ◽  
Author(s):  
Magali OLIVIER ◽  
Charles THEILLET

Sign in / Sign up

Export Citation Format

Share Document