scholarly journals Cell-cycle phase-dependence of drug-induced cycle progression delay.

1979 ◽  
Vol 27 (1) ◽  
pp. 470-473 ◽  
Author(s):  
W Göhde ◽  
M Meistrich ◽  
R Meyn ◽  
J Schumann ◽  
D Johnston ◽  
...  

The effect of adriamycin on cell cycle phase progression of CHO cells synchronized into the various phases of the cell cycle by elutriation was investigated by high resolution pulse cytophotometry. Cells treated in all phases of the cell cycle showed delay in their subsequent progression. In addition to the wellknown block of cells in the G2-phase, a delay in passage of cells from G1 to S and a decreased rate of transit through the S-phase were observed. A broadening of the DNA distributions of the treated cells was observed after cell division indicating induction of chromosomal abnormalities.

2000 ◽  
Vol 118 (4) ◽  
pp. A736-A737
Author(s):  
Zun-Wu Zhang ◽  
Nick Dorrell ◽  
Brendan W. Wren ◽  
Michael J. Farthing

2009 ◽  
Vol 100 (6) ◽  
pp. 959-970 ◽  
Author(s):  
M Loddo ◽  
S R Kingsbury ◽  
M Rashid ◽  
I Proctor ◽  
C Holt ◽  
...  

2018 ◽  
Author(s):  
Hui Xiao Chao ◽  
Randy I. Fakhreddin ◽  
Hristo K. Shimerov ◽  
Rashmi J. Kumar ◽  
Gaorav P. Gupta ◽  
...  

The cell cycle is canonically described as a series of 4 phases: G1 (gap phase 1), S (DNA synthesis), G2 (gap phase 2), and M (mitosis). Various models have been proposed to describe the durations of each phase, including a two-state model with fixed S-G2-M duration and random G1 duration1,2; a “stretched” model in which phase durations are proportional3; and an inheritance model in which sister cells show correlated phase durations2,4. A fundamental challenge is to understand the quantitative laws that govern cell-cycle progression and to reconcile the evidence supporting these different models. Here, we used time-lapse fluorescence microscopy to quantify the durations of G1, S, G2, and M phases for thousands of individual cells from three human cell lines. We found no evidence of correlation between any pair of phase durations. Instead, each phase followed an Erlang distribution with a characteristic rate and number of steps. These observations suggest that each cell cycle phase is memoryless with respect to previous phase durations. We challenged this model by perturbing the durations of specific phases through oncogene activation, inhibition of DNA synthesis, reduced temperature, and DNA damage. Phase durations remained uncoupled in individual cells despite large changes in durations in cell populations. To explain this behavior, we propose a mathematical model in which the independence of cell-cycle phase durations arises from a large number of molecular factors that each exerts a minor influence on the rate of cell-cycle progression. The model predicts that it is possible to force correlations between phases by making large perturbations to a single factor that contributes to more than one phase duration, which we confirmed experimentally by inhibiting cyclin-dependent kinase 2 (CDK2). We further report that phases can show coupling under certain dysfunctional states such as in a transformed cell line with defective cell cycle checkpoints. This quantitative model of cell cycle progression explains the paradoxical observation that phase durations are both inherited and independent and suggests how cell cycle progression may be altered in disease states.


2019 ◽  
Author(s):  
Chiaowen Joyce Hsiao ◽  
PoYuan Tung ◽  
John D. Blischak ◽  
Jonathan E. Burnett ◽  
Kenneth A. Barr ◽  
...  

AbstractCellular heterogeneity in gene expression is driven by cellular processes such as cell cycle and cell-type identity, and cellular environment such as spatial location. The cell cycle, in particular, is thought to be a key driver of cell-to-cell heterogeneity in gene expression, even in otherwise homogeneous cell populations. Recent advances in single-cell RNA-sequencing (scRNA-seq) facilitate detailed characterization of gene expression heterogeneity, and can thus shed new light on the processes driving heterogeneity. Here, we combined fluorescence imaging with scRNA-seq to measure cell cycle phase and gene expression levels in human induced pluripotent stem cells (iPSCs). Using these data, we developed a novel approach to characterize cell cycle progression. While standard methods assign cells to discrete cell cycle stages, our method goes beyond this, and quantifies cell cycle progression on a continuum. We found that, on average, scRNA-seq data from only five genes predicted a cell’s position on the cell cycle continuum to within 14% of the entire cycle, and that using more genes did not improve this accuracy. Our data and predictor of cell cycle phase can directly help future studies to account for cell-cycle-related heterogeneity in iPSCs. Our results and methods also provide a foundation for future work to characterize the effects of the cell cycle on expression heterogeneity in other cell types.


2017 ◽  
Author(s):  
Hui Xiao Chao ◽  
Cere E. Poovey ◽  
Ashley A. Privette ◽  
Gavin D. Grant ◽  
Hui Yan Chao ◽  
...  

ABSTRACTDNA damage checkpoints are cellular mechanisms that protect the integrity of the genome during cell cycle progression. In response to genotoxic stress, these checkpoints halt cell cycle progression until the damage is repaired, allowing cells enough time to recover from damage before resuming normal proliferation. Here, we investigate the temporal dynamics of DNA damage checkpoints in individual proliferating cells by observing cell cycle phase transitions following acute DNA damage. We find that in gap phases (G1 and G2), DNA damage triggers an abrupt halt to cell cycle progression in which the duration of arrest correlates with the severity of damage. However, cells that have already progressed beyond a proposed “commitment point” within a given cell cycle phase readily transition to the next phase, revealing a relaxation of checkpoint stringency during later stages of certain cell cycle phases. In contrast to G1 and G2, cell cycle progression in S phase is significantly less sensitive to DNA damage. Instead of exhibiting a complete halt, we find that increasing DNA damage doses leads to decreased rates of S-phase progression followed by arrest in the subsequent G2. Moreover, these phase-specific differences in DNA damage checkpoint dynamics are associated with corresponding differences in the proportions of irreversibly arrested cells. Thus, the precise timing of DNA damage determines the sensitivity, rate of cell cycle progression, and functional outcomes for damaged cells. These findings should inform our understanding of cell fate decisions after treatment with common cancer therapeutics such as genotoxins or spindle poisons, which often target cells in a specific cell cycle phase.


2021 ◽  
Author(s):  
Helle Samdal ◽  
Siv A. Hegre ◽  
Konika Chawla ◽  
Nina-Beate Liabakk ◽  
Per A. Aas ◽  
...  

AbstractLong noncoding RNAs (lncRNAs) are involved in the regulation of cell cycle, although only a few have been functionally characterized. By combining RNA sequencing and ChIP sequencing of cell cycle synchronized HaCaT cells we have previously identified lncRNAs highly enriched for cell cycle functions. Based on a cyclic expression profile and an overall high correlation to histone 3 lysine 4 trimethylation (H3K4me3) and RNA polymerase II (Pol II) signals, the lncRNA SNHG26 was identified as a top candidate. In the present study we report that downregulation of SNHG26 affects mitochondrial stress, proliferation, cell cycle phase distribution, and gene expression in cis- and in trans, and that this effect is reversed by upregulation of SNHG26. We also find that the effect on cell cycle phase distribution is cell type specific and stable over time. Results indicate an oncogenic role of SNHG26, possibly by affecting cell cycle progression through the regulation of downstream MYC-responsive genes.


1993 ◽  
Vol 104 (1) ◽  
pp. 19-30 ◽  
Author(s):  
K. Rothbarth ◽  
C. Petzelt ◽  
X. Lu ◽  
I.T. Todorov ◽  
G. Joswig ◽  
...  

Differential screening of a murine RNA-based cDNA library with cell cycle phase-specific transcripts released a cDNA clone (lambda CCD41) to a mRNA (1.349 kb) which, according to the mode of its detection, increases as expected during the cell cycle. The molecular characteristics of the protein (27 × 10(3) M(r)) encoded by this mRNA were deduced from the cDNA sequence and antibodies were prepared against the recombinant protein. Immunofluorescence studies performed with PtK2 cells revealed that the amount of the antigen specified by the CCD41 sequence increases during the cell cycle out of proportion with the DNA content. In G1 phase cells, the antigen is exclusively located at the site of the centrosome. During cell cycle progression the antigen becomes also detectable in perinuclear vesicles that increase in number and size, reaching a maximum in G2 phase cells. The centrosomal location of the CCD41 antigen was investigated in relation to another centrosomal antigen, centrosomin A. Since the latter antigen is detected by a monoclonal antibody reacting specifically and permanently with the centrosomes in PtK2 cells throughout the cell cycle it was possible to investigate the relative positions of the two proteins at the site of the centrosome and to add new information about the general architecture of the organelle and its changes during the cell cycle. While the centrosomin A antibody detects the pronounced cell cycle stage-dependent shape changes of the centrosome, the CCD41-encoded protein appears to be localized as a compact structure inside the centrosome. Its epitopes are exposed throughout the cell cycle except during a brief period immediately after the formation of the daughter centrosome.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Christophe Desterke ◽  
Annelise Bennaceur-Griscelli ◽  
Ali G. Turhan

Abstract Background During aging, hematopoietic stem cells (HSC) lose progressively both their self-renewal and differentiation potential. The precise molecular mechanisms of this phenomenon are not well established. To uncover the molecular events underlying this event, we have performed a bioinformatics analysis of 650 single-cell transcriptomes. Methods Single-cell transcriptome analyses of expression heterogeneity, cell cycle, and cell trajectory in human cell compartment enriched in hematopoietic stem cell compartment were investigated in the bone marrow according to the age of the donors. Identification of aging-related nodules was identified by weighted correlation network analysis in this primitive compartment. Results The analysis of single-cell transcriptomes allowed to uncover a major upregulation of EGR1 in human-aged lineage−CD34+CD38− cells which present cell cycle dysregulation with reduction of G2/M phase according to less expression of CCND2 during S phase. EGR1 upregulation in aging hematopoietic stem cells was found to be independent of cell cycle phases and gender. EGR1 expression trajectory in aged HSC highlighted a signature enriched in hematopoietic and immune disorders with the best induction of AP-1 complex and quiescence regulators such as EGR1, BTG2, JUNB, and NR41A. Sonic Hedgehog-related TMEM107 transmembrane molecule followed also EGR1 cell trajectory. EGR1-dependent gene weighted network analysis in human HSC-associated IER2 target protein-specific regulators of PP2A activity, IL1B, TNFSF10 ligands, and CD69, SELP membrane molecules in old HSC module with immune and leukemogenic signature. In contrast, for young HSC which were found with different cell cycle phase progression, its specific module highlighted upregulation of HIF1A hypoxic factor, PDE4B immune marker, DRAK2 (STK17B) T cell apoptosis regulator, and MYADM myeloid-associated marker. Conclusion EGR1 was found to be connected to the aging of human HSC and highlighted a specific cell trajectory contributing to the dysregulation of an inflammatory and leukemia-related transcriptional program in aged human HSCs. EGR1 and its program were found to be connected to the aging of human HSC with dissociation of quiescence property and cell cycle phase progression in this primitive hematopoietic compartment.


Sign in / Sign up

Export Citation Format

Share Document