scholarly journals Calcium-activated endoplasmic reticulum stress as a major component of tumor cell death induced by 2,5-dimethyl-celecoxib, a non-coxib analogue of celecoxib

2007 ◽  
Vol 6 (4) ◽  
pp. 1262-1275 ◽  
Author(s):  
Peter Pyrko ◽  
Adel Kardosh ◽  
Yen-Ting Liu ◽  
Nathaniel Soriano ◽  
Wenyong Xiong ◽  
...  
2007 ◽  
Vol 81 (6) ◽  
pp. 2817-2830 ◽  
Author(s):  
Zsolt Fábián ◽  
Christine M. Csatary ◽  
József Szeberényi ◽  
Laszlo K. Csatary

ABSTRACT While Newcastle disease virus (NDV) causes serious infections in birds, it is apparently nonpathogenic in mammalian species, including humans. Previous observations and small-scale clinical trials indicated that NDV exerts oncolytic effects. Isolates of NDV were found to have selective affinity to transformed cells. We previously showed that the attenuated NDV strain MTH-68/H causes apoptotic cell death in cultures of PC12 rat pheochromocytoma cells. The aim of the present study was to extend MTH-68/H cytotoxicity testing with human tumor cell lines and to analyze certain biochemical aspects of its oncolytic effect. MTH-68/H was found to be able to kill a wide range of transformed cells by apoptosis. While caspase-8 and caspase-9 are not involved in MTH-68/H-induced apoptosis, activation of caspase-3 and caspase-12 was detected in virus-infected PC12 cells. A human glioblastoma cell line with repressible expression of the p53 protein did not show any difference in MTH-68/H sensitivity in its p53-expressing and p53-depleted states, indicating that the apoptotic process induced by MTH-68/H does not depend on p53. Apoptosis was accompanied by virus replication in two tumor cell lines tested (PC12 cells and HeLa human cervical cells), and signs of endoplasmic reticulum stress (phosphorylation of protein kinase R-like endoplasmic reticulum kinase and eIF2α) were also detected in transformed cells. In contrast, proliferation of nontransformed mouse and rat fibroblast cell lines and human primary fibroblasts was not affected by MTH-68/H treatment. MTH-68/H thus selectively kills tumor cell cultures by inducing endoplasmic reticulum stress leading to p53-independent apoptotic cell death.


2016 ◽  
Vol 54 (12) ◽  
pp. 1343-1404
Author(s):  
G Metzger ◽  
P Di Fazio ◽  
DK Bartsch ◽  
T Gress ◽  
TT Wissniowski

2020 ◽  
Vol 8 (1) ◽  
pp. e000325 ◽  
Author(s):  
Luna Minute ◽  
Alvaro Teijeira ◽  
Alfonso R Sanchez-Paulete ◽  
Maria C Ochoa ◽  
Maite Alvarez ◽  
...  

BackgroundThe immune response to cancer is often conceptualized with the cancer immunity cycle. An essential step in this interpretation is that antigens released by dying tumors are presented by dendritic cells to naive or memory T cells in the tumor-draining lymph nodes. Whether tumor cell death resulting from cytotoxicity, as mediated by T cells or natural killer (NK) lymphocytes, is actually immunogenic currently remains unknown.MethodsIn this study, tumor cells were killed by antigen-specific T-cell receptor (TCR) transgenic CD8 T cells or activated NK cells. Immunogenic cell death was studied analyzing the membrane exposure of calreticulin and the release of high mobility group box 1 (HMGB1) by the dying tumor cells. Furthermore, the potential immunogenicity of the tumor cell debris was evaluated in immunocompetent mice challenged with an unrelated tumor sharing only one tumor-associated antigen and by class I major histocompatibility complex (MHC)-multimer stainings. Mice deficient inBatf3,Ifnar1andSting1were used to study mechanistic requirements.ResultsWe observe in cocultures of tumor cells and effector cytotoxic cells, the presence of markers of immunogenic cell death such as calreticulin exposure and soluble HMGB1 protein. Ovalbumin (OVA)-transfected MC38 colon cancer cells, exogenously pulsed to present the gp100 epitope are killed in culture by mouse gp100-specific TCR transgenic CD8 T cells. Immunization of mice with the resulting destroyed cells induces epitope spreading as observed by detection of OVA-specific T cells by MHC multimer staining and rejection of OVA+EG7 lymphoma cells. Similar results were observed in mice immunized with cell debris generated by NK-cell mediated cytotoxicity. Mice deficient inBatf3-dependent dendritic cells (conventional dendritic cells type 1, cDC1) fail to develop an anti-OVA response when immunized with tumor cells killed by cytotoxic lymphocytes. In line with this, cultured cDC1 dendritic cells uptake and can readily cross-present antigen from cytotoxicity-killed tumor cells to cognate CD8+T lymphocytes.ConclusionThese results support that an ongoing cytotoxic antitumor immune response can lead to immunogenic tumor cell death.


Sign in / Sign up

Export Citation Format

Share Document