scholarly journals In Vitro and In Vivo Studies of a New Class of Anticancer Molecules for Targeted Radiotherapy of Cancer

2016 ◽  
Vol 15 (4) ◽  
pp. 640-650 ◽  
Author(s):  
Chun-Rong Wang ◽  
Javed Mahmood ◽  
Qin-Rong Zhang ◽  
Ali Vedadi ◽  
Jenny Warrington ◽  
...  
2019 ◽  
Vol 156 (6) ◽  
pp. S-623
Author(s):  
Julia B. Krajewska ◽  
Jakub Wlodarczyk ◽  
Przemyslaw Taciak ◽  
Remigiusz Szczepaniak ◽  
Jakub Fichna

Cosmetics ◽  
2021 ◽  
Vol 8 (3) ◽  
pp. 65
Author(s):  
Pierfrancesco Morganti ◽  
Gianluca Morganti ◽  
Alessandro Gagliardini ◽  
Alka Lohani

Due to pollution and climate-change fear, further increased by the COVID19 pandemic, consumers are looking for body and mind health by the request of more effective and safe products, including the anti-aging skincare cosmeceuticals.. The term “cosmeceuticals” was coined in 1962 as a fusion of cosmetic and pharmaceutical to cover a new class of products able to achieve aesthetic and drug-like benefits. They not only improve the skin’s appearance, but also treat different dermatological conditions, through a physiological activity, shown by in vitro and in vivo studies. This new category of cosmetics should contain no recognized drugs, but nonetheless have medicinal value. Consumers, in fact, are looking for products able to regenerate the skin and maintain not only a youthful appearance together with well-ness and well-being, but preserving the environment also. Consequently, they are searching for cosmetics and food made with high-quality natural ingredients, packaged with biodegradable materials and realized by sustainable technologies, possibly at zero waste. Consumers, in fact, are afraid of the pollution and plastics invading lands and oceans, causing many frequent disasters on our planet. New and smart tissues and films, made by polysaccharides and natural active ingredients, are proposed as innovative cosmeceuticals. These non-woven tissues, embedded by micro/nano complexes of chitin and lignin encapsulating different active ingredients, could represent a new category of vehicles that are characterized for their high effectiveness and safeness. Moreover, they do not induce allergic nor sensitizing phenomena, being biodegradable; skin- and environmentally friendly; and free of preservatives, emulsifiers, colors, fragrances and any kind of chemicals. Last but not least, polysaccharides, chitin and lignin may be obtained from industrial and agro-forestry waste, safeguarding the natural raw materials for the future generations.


Blood ◽  
2009 ◽  
Vol 113 (24) ◽  
pp. 6161-6171 ◽  
Author(s):  
Edmund A. Rossi ◽  
David M. Goldenberg ◽  
Thomas M. Cardillo ◽  
Rhona Stein ◽  
Chien-Hsing Chang

Abstract The dock and lock (DNL) method is a new technology for generating multivalent antibodies. Here, we report in vitro and in vivo characterizations of 20-22 and 22-20, a pair of humanized hexavalent anti-CD20/22 bispecific antibodies (bsAbs) derived from veltuzumab (v-mab) and epratuzumab (e-mab). The 22-20 was made by site-specific conjugation of e-mab to 4 Fabs of v-mab; 20-22 is of the opposite configuration, composing v-mab and 4 Fabs of e-mab. Each bsAb translocates both CD22 and CD20 into lipid rafts, induces apoptosis and growth inhibition without second-antibody crosslinking, and is significantly more potent in killing lymphoma cells in vitro than their parental antibodies. Although both bsAbs triggered antibody-dependent cellular toxicity, neither displayed complement-dependent cytotoxicity. Intriguingly, 22-20 and 20-22 killed human lymphoma cells in preference to normal B cells ex vivo, whereas the parental v-mab depleted malignant and normal B cells equally. In vivo studies in Daudi tumors revealed 20-22, despite having a shorter serum half-life, had antitumor efficacy comparable with equimolar v-mab; 22-20 was less potent than 20-22 but more effective than e-mab and control bsAbs. These results indicate multiple advantages of hexavalent anti-CD20/22 bsAbs over the individual parental antibodies and suggest that these may represent a new class of cancer therapeutics.


2001 ◽  
Vol 5 (8) ◽  
pp. 645-651
Author(s):  
M. Peeva ◽  
M. Shopova ◽  
U. Michelsen ◽  
D. Wöhrle ◽  
G. Petrov ◽  
...  
Keyword(s):  

2005 ◽  
Vol 25 (1_suppl) ◽  
pp. S198-S198
Author(s):  
Joseph R Meno ◽  
Thien-son K Nguyen ◽  
Elise M Jensen ◽  
G Alexander West ◽  
Leonid Groysman ◽  
...  

1994 ◽  
Vol 72 (06) ◽  
pp. 942-946 ◽  
Author(s):  
Raffaele Landolfi ◽  
Erica De Candia ◽  
Bianca Rocca ◽  
Giovanni Ciabattoni ◽  
Armando Antinori ◽  
...  

SummarySeveral “in vitro” and “in vivo” studies indicate that heparin administration may affect platelet function. In this study we investigated the effects of prophylactic heparin on thromboxane (Tx)A2 biosynthesis “in vivo”, as assessed by the urinary excretion of major enzymatic metabolites 11-dehydro-TxB2 and 2,3-dinor-TxB2. Twenty-four patients who were candidates for cholecystectomy because of uncomplicated lithiasis were randomly assigned to receive placebo, unfractionated heparin, low molecular weight heparin or unfractionaed heparin plus 100 mg aspirin. Measurements of daily excretion of Tx metabolites were performed before and during the treatment. In the groups assigned to placebo and to low molecular weight heparin there was no statistically significant modification of Tx metabolite excretion while patients receiving unfractionated heparin had a significant increase of both metabolites (11-dehydro-TxB2: 3844 ± 1388 vs 2092 ±777, p <0.05; 2,3-dinor-TxB2: 2737 ± 808 vs 1535 ± 771 pg/mg creatinine, p <0.05). In patients randomized to receive low-dose aspirin plus unfractionated heparin the excretion of the two metabolites was largely suppressed thus suggesting that platelets are the primary source of enhanced thromboxane biosynthesis associated with heparin administration. These data indicate that unfractionated heparin causes platelet activation “in vivo” and suggest that the use of low molecular weight heparin may avoid this complication.


2020 ◽  
Vol 72 (5) ◽  
Author(s):  
Mario Fadin ◽  
Maria C. Nicoletti ◽  
Marzia Pellizzato ◽  
Manuela Accardi ◽  
Maria G. Baietti ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document