Abstract P020: Schlafen 11 (SLFN11) as a predictive biomarker of the response to TAS1553, a novel small molecule ribonucleotide reductase subunit interaction inhibitor

Author(s):  
Hiroto Fukushima ◽  
Hiroyuki Ueno ◽  
Takuya Hoshino ◽  
Wakako Yano ◽  
Hiraku Itadani ◽  
...  
1999 ◽  
Vol 80 (10) ◽  
pp. 2713-2718 ◽  
Author(s):  
Yunming Sun ◽  
Joe Conner

Herpesvirus ribonucleotide reductases, essential for the de novo synthesis of viral DNA, are composed of two non-identical subunits, termed R1 and R2. The U28 ORF from human herpesvirus-7 has been classified, by sequence comparisons, as a homologue of the R1 subunit from ribonucleotide reductase but no R2 ORF is present. Detailed analysis of the U28 amino acid sequence indicated that a number of essential R1 catalytic residues are absent. Cloning and expression of the U28 protein in E. coli and its subsequent characterization in subunit interaction and enzyme activity assays confirmed that it is not a functional equivalent of a herpesvirus R1. In the absence of the R2 gene, we propose that the R1 ORF has evolved a distinct, as yet unidentified, function not only in human herpesvirus-7 but also in other human betaherpesviruses.


2000 ◽  
Vol 347 (1) ◽  
pp. 97-104
Author(s):  
Yunming SUN ◽  
Joe CONNER

We report on the separate PCR cloning and subsequent expression and purification of the large (R1) and small (R2) subunits from equine herpes virus type 4 (EHV-4) ribonucleotide reductase. The EHV-4 R1 and R2 subunits reconstituted an active enzyme and their abilities to complement the R1 and R2 subunits from the closely related herpes simplex virus 1 (HSV-1) ribonucleotide reductase, with the use of subunit interaction and enzyme activity assays, were analysed. Both EHV-4 R1/HSV-1 R2 and HSV-1 R1/EHV-4 R2 were able to assemble heterosubunit complexes but, surprisingly, neither of these complexes was fully active in enzyme activity assays; the EHV-4 R1/HSV-1 R2 and HSV-1 R1/EHV-4 R2 enzymes had 50% and 5% of their respective wild-type activities. Site-directed mutagenesis was used to alter two non-conserved residues located within the highly conserved and functionally important C-termini of the EHV-4 and HSV-1 R1 proteins. Mutation of Pro-737 to Lys and Lys-1084 to Pro in EHV-4 and HSV-1 R1 respectively had no effects on subunit assembly. Mutation of Pro-737 to Lys in EHV-4 R1 decreased enzyme activity by 50%; replacement of Lys-1084 by Pro in HSV-1 R1 had no effect on enzyme activity. Both alterations failed to restore full enzyme activities to the heterosubunit enzymes. Therefore probably neither of these amino acids has a direct role in catalysis. However, mutation of the highly conserved Tyr-1111 to Phe in HSV-1 R1 inactivated enzyme activity without affecting subunit interaction.


2017 ◽  
Vol 114 (31) ◽  
pp. 8241-8246 ◽  
Author(s):  
Md. Faiz Ahmad ◽  
Intekhab Alam ◽  
Sarah E. Huff ◽  
John Pink ◽  
Sheryl A. Flanagan ◽  
...  

Human ribonucleotide reductase (hRR) is crucial for DNA replication and maintenance of a balanced dNTP pool, and is an established cancer target. Nucleoside analogs such as gemcitabine diphosphate and clofarabine nucleotides target the large subunit (hRRM1) of hRR. These drugs have a poor therapeutic index due to toxicity caused by additional effects, including DNA chain termination. The discovery of nonnucleoside, reversible, small-molecule inhibitors with greater specificity against hRRM1 is a key step in the development of more effective treatments for cancer. Here, we report the identification and characterization of a unique nonnucleoside small-molecule hRR inhibitor, naphthyl salicylic acyl hydrazone (NSAH), using virtual screening, binding affinity, inhibition, and cell toxicity assays. NSAH binds to hRRM1 with an apparent dissociation constant of 37 µM, and steady-state kinetics reveal a competitive mode of inhibition. A 2.66-Å resolution crystal structure of NSAH in complex with hRRM1 demonstrates that NSAH functions by binding at the catalytic site (C-site) where it makes both common and unique contacts with the enzyme compared with NDP substrates. Importantly, the IC50 for NSAH is within twofold of gemcitabine for growth inhibition of multiple cancer cell lines, while demonstrating little cytotoxicity against normal mobilized peripheral blood progenitor cells. NSAH depresses dGTP and dATP levels in the dNTP pool causing S-phase arrest, providing evidence for RR inhibition in cells. This report of a nonnucleoside reversible inhibitor binding at the catalytic site of hRRM1 provides a starting point for the design of a unique class of hRR inhibitors.


Cancers ◽  
2021 ◽  
Vol 13 (18) ◽  
pp. 4601
Author(s):  
Ukhyun Jo ◽  
Yasuhisa Murai ◽  
Naoko Takebe ◽  
Anish Thomas ◽  
Yves Pommier

Precision medicine aims to implement strategies based on the molecular features of tumors and optimized drug delivery to improve cancer diagnosis and treatment. DNA replication is a logical approach because it can be targeted by a broad range of anticancer drugs that are both clinically approved and in development. These drugs increase deleterious replication stress (RepStress); however, how to selectively target and identify the tumors with specific molecular characteristics are unmet clinical needs. Here, we provide background information on the molecular processes of DNA replication and its checkpoints, and discuss how to target replication, checkpoint, and repair pathways with ATR inhibitors and exploit Schlafen 11 (SLFN11) as a predictive biomarker.


2013 ◽  
Vol 73 (21) ◽  
pp. 6484-6493 ◽  
Author(s):  
Bingsen Zhou ◽  
Leila Su ◽  
Shuya Hu ◽  
Weidong Hu ◽  
M.L. Richard Yip ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document