Abstract 3772: The amplified cancer gene LAPTM4B plays a critical role in autophagosome maturation and promotes cancer cell survival during metabolic stress

Author(s):  
Yang Li ◽  
Ruiyang Tian ◽  
J. Dirk Iglehart ◽  
Zhigang C. Wang ◽  
Andrea L. Richardson
PLoS ONE ◽  
2014 ◽  
Vol 9 (10) ◽  
pp. e110119 ◽  
Author(s):  
Eric Bradley ◽  
Somsankar Dasgupta ◽  
Xue Jiang ◽  
Xiaying Zhao ◽  
Gu Zhu ◽  
...  

2017 ◽  
Vol 8 (1) ◽  
Author(s):  
Nam Hee Kim ◽  
Yong Hoon Cha ◽  
Jueun Lee ◽  
Seon-Hyeong Lee ◽  
Ji Hye Yang ◽  
...  

2015 ◽  
Vol 15 (3) ◽  
pp. 215-226 ◽  
Author(s):  
Zongyuan Yang ◽  
Yi Liu ◽  
Xiao Wei ◽  
Xiaoshui Zhou ◽  
Cheng Gong ◽  
...  

2018 ◽  
Vol 18 (4) ◽  
pp. 591-596 ◽  
Author(s):  
Domingo Sanchez Ruiz ◽  
Hella Luksch ◽  
Marco Sifringer ◽  
Achim Temme ◽  
Christian Staufner ◽  
...  

Background: Glutamate receptors are widely expressed in different types of cancer cells. α-Amino-3- hydroxy-5-methyl-4-isoxazolepropionate (AMPA) receptors are ionotropic glutamate receptors which are coupled to intracellular signaling pathways that influence cancer cell survival, proliferation, and migration. Blockade of AMPA receptors by pharmacologic compounds may potentially constitute an effective tool in anticancer treatment strategies. Method: Here we investigated the impact of the AMPA receptor antagonist CFM-2 on the expression of the protein survivin, which is known to promote cancer cell survival and proliferation. We show that CFM-2 inhibits survivin expression at mRNA and protein levels and decreases the viability of cancer cells. Using a stably transfected cell line which overexpresses survivin, we demonstrate that over-expression of survivin enhances cancer cell viability and attenuates CFM-2–mediated inhibition of cancer cell growth. Result: These findings point towards suppression of survivin expression as a new mechanism contributing to anticancer effects of AMPA antagonists.


2020 ◽  
Vol 18 (10) ◽  
pp. 1545-1559
Author(s):  
Arlou Kristina Angeles ◽  
Doreen Heckmann ◽  
Niclas Flosdorf ◽  
Stefan Duensing ◽  
Holger Sültmann

Oncogenesis ◽  
2021 ◽  
Vol 10 (2) ◽  
Author(s):  
Yu Geon Lee ◽  
Hui Won Kim ◽  
Yeji Nam ◽  
Kyeong Jin Shin ◽  
Yu Jin Lee ◽  
...  

AbstractMitochondrial proteases are key components in mitochondrial stress responses that maintain proteostasis and mitochondrial integrity in harsh environmental conditions, which leads to the acquisition of aggressive phenotypes, including chemoresistance and metastasis. However, the molecular mechanisms and exact role of mitochondrial proteases in cancer remain largely unexplored. Here, we identified functional crosstalk between LONP1 and ClpP, which are two mitochondrial matrix proteases that cooperate to attenuate proteotoxic stress and protect mitochondrial functions for cancer cell survival. LONP1 and ClpP genes closely localized on chromosome 19 and were co-expressed at high levels in most human cancers. Depletion of both genes synergistically attenuated cancer cell growth and induced cell death due to impaired mitochondrial functions and increased oxidative stress. Using mitochondrial matrix proteomic analysis with an engineered peroxidase (APEX)-mediated proximity biotinylation method, we identified the specific target substrates of these proteases, which were crucial components of mitochondrial functions, including oxidative phosphorylation, the TCA cycle, and amino acid and lipid metabolism. Furthermore, we found that LONP1 and ClpP shared many substrates, including serine hydroxymethyltransferase 2 (SHMT2). Inhibition of both LONP1 and ClpP additively increased the amount of unfolded SHMT2 protein and enhanced sensitivity to SHMT2 inhibitor, resulting in significantly reduced cell growth and increased cell death under metabolic stress. Additionally, prostate cancer patients with higher LONP1 and ClpP expression exhibited poorer survival. These results suggest that interventions targeting the mitochondrial proteostasis network via LONP1 and ClpP could be potential therapeutic strategies for cancer.


Sign in / Sign up

Export Citation Format

Share Document