Abstract 3578: Dual mTOR kinase inhibitor overcomes rapamycin resistance in vitro

Author(s):  
Yao Dai ◽  
Li Zhao ◽  
Dietmar Siemann
2013 ◽  
Author(s):  
Tam Tran ◽  
Kristen Hege ◽  
Deborah Mortensen ◽  
Heather Raymon ◽  
Shuichan Xu
Keyword(s):  

2014 ◽  
Vol 14 (2) ◽  
pp. 395-406 ◽  
Author(s):  
Emily K. Slotkin ◽  
Parag P. Patwardhan ◽  
Shyamprasad D. Vasudeva ◽  
Elisa de Stanchina ◽  
William D. Tap ◽  
...  

2014 ◽  
Vol 16 (1) ◽  
Author(s):  
Nicola J Jordan ◽  
Carol M Dutkowski ◽  
Denise Barrow ◽  
Huw J Mottram ◽  
Iain R Hutcheson ◽  
...  

2021 ◽  
Vol 14 (1) ◽  
pp. 38
Author(s):  
Hyo Jeong Lee ◽  
Pyeonghwa Jeong ◽  
Yeongyu Moon ◽  
Jungil Choi ◽  
Jeong Doo Heo ◽  
...  

Rearranged during transfection (RET), a receptor tyrosine kinase, is activated by glial cell line-derived neurotrophic factor family ligands. Chromosomal rearrangement or point mutations in RET are observed in patients with papillary thyroid and medullary thyroid carcinomas. Oncogenic alteration of RET results in constitutive activation of RET activity. Therefore, inhibiting RET activity has become a target in thyroid cancer therapy. Here, the anti-tumor activity of a novel RET inhibitor was characterized in medullary thyroid carcinoma cells. The indirubin derivative LDD-2633 was tested for RET kinase inhibitory activity. In vitro, LDD-2633 showed potent inhibition of RET kinase activity, with an IC50 of 4.42 nM. The growth of TT thyroid carcinoma cells harboring an RET mutation was suppressed by LDD-2633 treatment via the proliferation suppression and the induction of apoptosis. The effects of LDD-2633 on the RET signaling pathway were examined; LDD-2633 inhibited the phosphorylation of the RET protein and the downstream molecules Shc and ERK1/2. Oral administration of 20 or 40 mg/kg of LDD-2633 induced dose-dependent suppression of TT cell xenograft tumor growth. The in vivo and in vitro experimental results supported the potential use of LDD-2633 as an anticancer drug for thyroid cancers.


Xenobiotica ◽  
2021 ◽  
pp. 1-12
Author(s):  
Arnaud Bruyère ◽  
Marc Le Vée ◽  
Elodie Jouan ◽  
Stephanie Molez ◽  
Anne T. Nies ◽  
...  

2021 ◽  
Vol 22 (4) ◽  
pp. 1985
Author(s):  
Xiaohe Li ◽  
Ling Ma ◽  
Kai Huang ◽  
Yuli Wei ◽  
Shida Long ◽  
...  

Idiopathic pulmonary fibrosis (IPF) is a fatal and age-related pulmonary disease. Nintedanib is a receptor tyrosine kinase inhibitor, and one of the only two listed drugs against IPF. Regorafenib is a novel, orally active, multi-kinase inhibitor that has similar targets to nintedanib and is applied to treat colorectal cancer and gastrointestinal stromal tumors in patients. In this study, we first identified that regorafenib could alleviate bleomycin-induced pulmonary fibrosis in mice. The in vivo experiments indicated that regorafenib suppresses collagen accumulation and myofibroblast activation. Further in vitro mechanism studies showed that regorafenib inhibits the activation and migration of myofibroblasts and extracellular matrix production, mainly through suppressing the transforming growth factor (TGF)-β1/Smad and non-Smad signaling pathways. In vitro studies have also indicated that regorafenib could augment autophagy in myofibroblasts by suppressing TGF-β1/mTOR (mechanistic target of rapamycin) signaling, and could promote apoptosis in myofibroblasts. In conclusion, regorafenib attenuates bleomycin-induced pulmonary fibrosis by suppressing the TGF-β1 signaling pathway.


Sign in / Sign up

Export Citation Format

Share Document