Abstract 3512: Cyclopamine enhances TRAIL-induced apoptosis by induction of DR5 via ER stress in gastric cancer cells

Author(s):  
Yoo Jin Na ◽  
Dae-Hee Lee ◽  
Jung Lim Kim ◽  
Bo Ram Kim ◽  
Seong Hye Park ◽  
...  
Tumor Biology ◽  
2016 ◽  
Vol 37 (7) ◽  
pp. 9709-9719 ◽  
Author(s):  
Jung Lim Kim ◽  
Dae-Hee Lee ◽  
Yoo Jin Na ◽  
Bo Ram Kim ◽  
Yoon A. Jeong ◽  
...  

2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Nan Zhou ◽  
Hui Qiao ◽  
Miaomiao Zeng ◽  
Lei Yang ◽  
Yongning Zhou ◽  
...  

Abstract Background Mounting evidence implicates circular RNAs (circRNAs) in various biological processes during cancer progression. Gastric cancer is a main cause of cancer-related deaths worldwide. Herein, we aimed at investigating whether circ_002117 mediates gastric cancer progression through endoplasmic reticulum (ER) stress. Methods Bioinformatics analysis detected differentially expressed circRNAs and their target miRNA candidates, and RT-qPCR was performed to detect expression of circ_002117, microRNA (miRNA)-370 and HERPUD1 in gastric cancer tissues and cells. Gastric cancer cells were transfected with plasmids and their proliferative ability and apoptosis were detected with gain- and loss-of-function assay. The ER of treated cells was observed under a transmission electron microscope. Dual-luciferase reporter gene assay and RIP were performed to detect the interaction between HEPRUD1, miR-370 and circ_002117-treated cells were injected into mice to establish xenograft tumor model. Results Circ_002117 and HEPRUD1 were poorly expressed whereas miR-370 was highly expressed in clinical cancer tissues and cells. Circ_002117 was indicated to target and suppress miR-370 expression, while HERPUD1 was directly targeted by miR-370. Circ_002117 overexpression or miR-370 deficiency promoted ER stress-induced apoptosis and decreased proliferation of gastric cancer cells, which was reversed by silencing of HEPRUD1. Circ_002117 overexpression or miR-370 depletion significantly suppressed gastric cancer tumorigenesis in vivo. Conclusions Taken altogether, circ_002117 facilitated ER stress-induced apoptosis in gastric cancer by upregulating HERPUD1 through miR-370 inhibition.


2020 ◽  
Vol 20 ◽  
Author(s):  
En Xu ◽  
Hao Zhu ◽  
Feng Wang ◽  
Ji Miao ◽  
Shangce Du ◽  
...  

: Gastric cancer is one of the most common malignancies worldwide and the third leading cause of cancer-related death. In the present study, we investigated the potential activity of OSI-027, a potent and selective mammalian target of rapamycin complex 1/2 (mTOR1/2) dual inhibitor, alone or in combination with oxaliplatin against gastric cancer cells in vitro. Cell counting kit-8 assays and EdU staining were performed to examine the proliferation of cancer cells. Cell cycle and apoptosis were detected by flow cytometry. Western blot was used to detect the elements of the mTOR pathway and Pgp in gastric cancer cell lines. OSI-027 inhibited the proliferation of MKN-45 and AGS cells by arresting the cell cycle in the G0/G1 phase. At the molecular level, OSI-027 simultaneously blocked mTORC1 and mTORC2 activation, and resulted in the downregulation of phosphor-Akt, phpspho-p70S6k, phosphor-4EBP1, cyclin D1, and cyclin-dependent kinase4 (CDK4). Additionally, OSI-027 also downregulated P-gp, which enhanced oxaliplatin-induced apoptosis and suppressed multidrug resistance. Moreover, OSI-027 exhibited synergistic cytotoxic effects with oxaliplatin in vitro, while a P-gp siRNA knockdown significantly inhibited the synergistic effect. In summary, our results suggest that dual mTORC1/mTORC2 inhibitors (e.g., OSI-027) should be further investigated as a potential valuable treatment for gastric cancer.


2021 ◽  
Vol 49 (4) ◽  
pp. 030006052110059
Author(s):  
Fangfang Yong ◽  
Hemei Wang ◽  
Chao Li ◽  
Huiqun Jia

Objective Previous studies suggested that sevoflurane exerts anti-proliferative, anti-migratory, and anti-invasive effects on cancer cells. To determine the role of sevoflurane on gastric cancer (GC) progression, we evaluated its effects on the proliferation, migration, and invasion of SGC7901, AGS, and MGC803 GC cells. Methods GC cells were exposed to different concentrations of sevoflurane (1.7, 3.4, or 5.1% v/v). Cell viability, migration, and invasion were evaluated using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and Transwell assays. Immunohistochemical staining and immunoblotting were performed to analyze forkhead box protein 3 (FOXP3) protein expression in tissue specimens and cell lines, respectively. Results FOXP3 was downregulated in human GC specimens and cell lines. Functionally, FOXP3 overexpression significantly inhibited the proliferation, migration, and invasion of GC cells and accelerated their apoptosis. Moreover, sevoflurane significantly blocked GC cell migration and invasion compared with the findings in the control group. However, FOXP3 silencing neutralized sevoflurane-induced apoptosis and the inhibition of GC cell migration and invasion. Sevoflurane-induced apoptosis and the suppression of migration and invasion might be associated with FOXP3 overactivation in GC cells. Conclusions Sevoflurane activated FOXP3 and prevented GC progression via inhibiting cell migration and invasion in vitro.


Oncogene ◽  
2001 ◽  
Vol 20 (55) ◽  
pp. 8009-8018 ◽  
Author(s):  
Xiao-Hua Jiang ◽  
Benjamin Chun-Yu Wong ◽  
Marie Chia-Mi Lin ◽  
Geng-Hui Zhu ◽  
Hsiang-Fu Kung ◽  
...  

2020 ◽  
Vol 2020 ◽  
pp. 1-9 ◽  
Author(s):  
Li-Qun Ren ◽  
Qi Li ◽  
Yang Zhang

Objective. Gastric cancer, one of the most common malignant tumors worldwide, arises from the gastric mucosal epithelium and severely affects patient health and quality of life. Luteolin (LUT) is a flavonoid found in vegetables and fruits with diverse functions. A large number of studies have confirmed that LUT has an antitumor effect. Therefore, this study is aimed at verifying whether LUT can exert antitumor effects in synergy with oxaliplatin (OXA). As such, we examined the effects of LUT, OXA, and their coadministration in a gastric adenocarcinoma cell line (SGC-7901). We used the MTT assay to quantify the proliferation of SGC-7901 cells, flow cytometry to detect the cell cycle and apoptosis, ELISA to detect the expression of cell-cycle-related proteins, and western blot to detect the expression of related apoptotic factors. The results of this study show that the combination of LUT and OXA inhibited SGC-7901 cell proliferation and induced apoptosis by altering cell-cycle proportions. In addition, the combination also activated Cyt c/caspase signaling in SGC-7901 cells. In summary, LUT synergy with OXA inhibited the proliferation of gastric cancer cells in vitro. The present study also elucidated the mechanism by which LUT potentiated the sensitivity of SGC-7901 cells to OXA through the Cyt c/caspase pathway.


Sign in / Sign up

Export Citation Format

Share Document