Abstract 2012:In vitrovalidation of tumor-derived large extracellular vesicles isolation and characterization as suitable tool for liquid biopsy

Author(s):  
Gaetano Pezzicoli ◽  
Domenica Lovero ◽  
Marco Tucci ◽  
Camillo Porta ◽  
Francesco Mannavola
The Analyst ◽  
2021 ◽  
Author(s):  
Karishma Singh ◽  
Ruchika Nalabotala ◽  
Kevin M. Koo ◽  
Sudeep Bose ◽  
Ranu Nayak ◽  
...  

Exosomes are nano-sized extracellular vesicles that serve as a communications system between cells and has shown tremendous promise as liquid biopsy biomarkers in diagnostic, prognostic, and even therapeutic use in...


Author(s):  
И.Б. Алчинова ◽  
М.В. Полякова ◽  
И.Н. Сабурина ◽  
М.Ю. Карганов

Механизм терапевтического действия мультипотентных мезенхимных стволовых клеток (ММСК) на облученный организм в последнее время вызывает повышенный интерес исследователей. В качестве активного участника паракринного механизма реализации этого эффекта предлагают рассматривать внеклеточные везикулы, секретируемые практически всеми клетками живого организма. Цель работы: выделить и охарактеризовать внеклеточные везикулы, продуцируемые стволовыми клетками различной природы. Материалы и методы. Суспензии внеклеточных везикул, выделенных по модифицированному протоколу дифференциального центрифугирования из культуральных жидкостей от культур ММСК костного мозга человека 2-го пассажа и ММСК жировой ткани крысы 4-го пассажа, были проанализированы методом просвечивающей электронной микроскопии и методом анализа траекторий наночастиц. Результаты. Исследование показало наличие в обоих образцах микрочастиц размерами до и около 100 нм, однако процентное содержание частиц разных размеров в суспензии различалось для двух анализируемых типов клеток. Заключение. Полученные результаты могут свидетельствовать о специфике секреции, обусловленной клеточным типом. A mechanism of the therapeutic effect of multipotent mesenchymal stem cells (MMSC) on irradiated body has recently arisen much interest of researchers. Extracellular vesicles (EVs) secreted by almost all cells of a living organism were suggested to actively contribute to the paracrine mechanism of this effect. The aim of the study was isolation and characterization of extracellular vesicles produced by various types of stem cells. Materials and methods. Suspensions of EVs were isolated from culture media of passage 2 human bone marrow-derived MMSC and passage 4 rat adipose tissue-derived MMSC using a modified protocol of differential centrifugation and then studied using transmission electron microscopy and nanoparticle tracking analysis. Results. The study showed the presence of microparticles with a size of >100 nm in the examined samples. However, the percent content of particles with different sizes in the suspension was different in two analyzed types of cell culture. Conclusion. The study results might reflect a specificity of secretion determined by the cell type.


2021 ◽  
Vol 10 (2) ◽  
pp. 319
Author(s):  
Hee Cheol Yang ◽  
Won Jong Rhee

Because cancers are heterogeneous, it is evident that multiplexed detection is required to achieve disease diagnosis with high accuracy and specificity. Extracellular vesicles (EVs) have been a subject of great interest as sources of novel biomarkers for cancer liquid biopsy. However, EVs are nano-sized particles that are difficult to handle; thus, it is necessary to develop a method that enables efficient and straightforward EV biomarker detection. In the present study, we developed a method for single step in situ detection of EV surface proteins and inner miRNAs simultaneously using a flow cytometer. CD63 antibody and molecular beacon-21 were investigated for multiplexed biomarker detection in normal and cancer EVs. A phospholipid-polymer-phospholipid conjugate was introduced to induce clustering of the EVs analyzed using nanoparticle tracking analysis, which enhanced the detection signals. As a result, the method could detect and distinguish cancer cell-derived EVs using a flow cytometer. Thus, single step in situ detection of multiple EV biomarkers using a flow cytometer can be applied as a simple, labor- and time-saving, non-invasive liquid biopsy for the diagnosis of various diseases, including cancer.


Author(s):  
Birte Weber ◽  
Niklas Franz ◽  
Ingo Marzi ◽  
Dirk Henrich ◽  
Liudmila Leppik

AbstractDue to the continued high incidence and mortality rate worldwide, there is a need to develop new strategies for the quick, precise, and valuable recognition of presenting injury pattern in traumatized and poly-traumatized patients. Extracellular vesicles (EVs) have been shown to facilitate intercellular communication processes between cells in close proximity as well as distant cells in healthy and disease organisms. miRNAs and proteins transferred by EVs play biological roles in maintaining normal organ structure and function under physiological conditions. In pathological conditions, EVs change the miRNAs and protein cargo composition, mediating or suppressing the injury consequences. Therefore, incorporating EVs with their unique protein and miRNAs signature into the list of promising new biomarkers is a logical next step. In this review, we discuss the general characteristics and technical aspects of EVs isolation and characterization. We discuss results of recent in vitro, in vivo, and patients study describing the role of EVs in different inflammatory diseases and traumatic organ injuries. miRNAs and protein signature of EVs found in patients with acute organ injury are also debated.


2021 ◽  
Vol 224 (2) ◽  
pp. S75-S76
Author(s):  
Megan Shepherd ◽  
Enkhtuya Radnaa ◽  
Rheanna Urrabaz-Garza ◽  
Talar Kechichian ◽  
Ourlad Alzeus G. Tantengco ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jeremy W. Roy ◽  
Catherine A. Taylor ◽  
Annie P. Beauregard ◽  
Surendar R. Dhadi ◽  
D. Craig Ayre ◽  
...  

AbstractExtracellular vesicles (EVs) have been recognized as a rich material for the analysis of DNA, RNA, and protein biomarkers. A remaining challenge for the deployment of EV-based diagnostic and prognostic assays in liquid biopsy testing is the development of an EV isolation method that is amenable to a clinical diagnostic lab setting and is compatible with multiple types of biomarker analyses. We have previously designed a synthetic peptide, known as Vn96 (ME kit), which efficiently isolates EVs from multiple biofluids in a short timeframe without the use of specialized lab equipment. Moreover, it has recently been shown that Vn96 also facilitates the co-isolation of cell-free DNA (cfDNA) along with EVs. Herein we describe an optimized method for Vn96 affinity-based EV and cfDNA isolation from plasma samples and have developed a multiparametric extraction protocol for the sequential isolation of DNA, RNA, and protein from the same plasma EV and cfDNA sample. We are able to isolate sufficient material by the multiparametric extraction protocol for use in downstream analyses, including ddPCR (DNA) and ‘omic profiling by both small RNA sequencing (RNA) and mass spectrometry (protein), from a minimum volume (4 mL) of plasma. This multiparametric extraction protocol should improve the ability to analyse multiple biomarker materials (DNA, RNA and protein) from the same limited starting material, which may improve the sensitivity and specificity of liquid biopsy tests that exploit EV-based and cfDNA biomarkers for disease detection and monitoring.


2020 ◽  
Vol 21 (23) ◽  
pp. 9083
Author(s):  
Catherine Taylor ◽  
Simi Chacko ◽  
Michelle Davey ◽  
Jacynthe Lacroix ◽  
Alexander MacPherson ◽  
...  

Liquid biopsy is a minimally-invasive diagnostic method that may improve access to molecular profiling for non-small cell lung cancer (NSCLC) patients. Although cell-free DNA (cf-DNA) isolation from plasma is the standard liquid biopsy method for detecting DNA mutations in cancer patients, the sensitivity can be highly variable. Vn96 is a peptide with an affinity for both extracellular vesicles (EVs) and circulating cf-DNA. In this study, we evaluated whether peptide-affinity (PA) precipitation of EVs and cf-DNA from NSCLC patient plasma improves the sensitivity of single nucleotide variants (SNVs) detection and compared observed SNVs with those reported in the matched tissue biopsy. NSCLC patient plasma was subjected to either PA precipitation or cell-free methods and total nucleic acid (TNA) was extracted; SNVs were then detected by next-generation sequencing (NGS). PA led to increased recovery of DNA as well as an improvement in NGS sequencing parameters when compared to cf-TNA. Reduced concordance with tissue was observed in PA-TNA (62%) compared to cf-TNA (81%), mainly due to identification of SNVs in PA-TNA that were not observed in tissue. EGFR mutations were detected in PA-TNA with 83% sensitivity and 100% specificity. In conclusion, PA-TNA may improve the detection limits of low-abundance alleles using NGS.


The Analyst ◽  
2016 ◽  
Vol 141 (2) ◽  
pp. 371-381 ◽  
Author(s):  
Vijaya Sunkara ◽  
Hyun-Kyung Woo ◽  
Yoon-Kyoung Cho

We present an overview of current isolation, detection, and characterization methods of extracellular vesicles and their applications and limitations as a potential emerging biomarker in cancer management and their clinical implementation.


Author(s):  
Dan Li ◽  
Wenjia Lai ◽  
Di Fan ◽  
Qiaojun Fang

Breast cancer is the most common malignant disease in women worldwide. Early diagnosis and treatment can greatly improve the management of breast cancer. Liquid biopsies are becoming convenient detection methods for diagnosing and monitoring breast cancer due to their non-invasiveness and ability to provide real-time feedback. A range of liquid biopsy markers, including circulating tumor proteins, circulating tumor cells, and circulating tumor nucleic acids, have been implemented for breast cancer diagnosis and prognosis, with each having its own advantages and limitations. Circulating extracellular vesicles are messengers of intercellular communication that are packed with information from mother cells and are found in a wide variety of bodily fluids; thus, they are emerging as ideal candidates for liquid biopsy biomarkers. In this review, we summarize extracellular vesicle protein markers that can be potentially used for the early diagnosis and prognosis of breast cancer or determining its specific subtypes.


Author(s):  
Zezhou Zhao ◽  
Dillon C. Muth ◽  
Vasiliki Mahairaki ◽  
Linzhao Cheng ◽  
Kenneth W. Witwer

Sign in / Sign up

Export Citation Format

Share Document