Abstract PR09: A genome-wide RNAi screen reveals a protective role of decreased lipogenesis under hypoxia

Author(s):  
Melissa M. Keenan ◽  
Beiyu Liu ◽  
Jianli Wu ◽  
Derek Cyr ◽  
Joseph Lucas ◽  
...  
2014 ◽  
Vol 226 (03) ◽  
Author(s):  
F Ponthan ◽  
D Pal ◽  
J Vormoor ◽  
O Heidenreich
Keyword(s):  

Genes ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 1007
Author(s):  
Divya Kattupalli ◽  
Asha Sreenivasan ◽  
Eppurathu Vasudevan Soniya

Black pepper (Piper nigrum L.) is a prominent spice that is an indispensable ingredient in cuisine and traditional medicine. Phytophthora capsici, the causative agent of footrot disease, causes a drastic constraint in P. nigrum cultivation and productivity. To counterattack various biotic and abiotic stresses, plants employ a broad array of mechanisms that includes the accumulation of pathogenesis-related (PR) proteins. Through a genome-wide survey, eleven PR-1 genes that belong to a CAP superfamily protein with a caveolin-binding motif (CBM) and a CAP-derived peptide (CAPE) were identified from P. nigrum. Despite the critical functional domains, PnPR-1 homologs differ in their signal peptide motifs and core amino acid composition in the functional protein domains. The conserved motifs of PnPR-1 proteins were identified using MEME. Most of the PnPR-1 proteins were basic in nature. Secondary and 3D structure analyses of the PnPR-1 proteins were also predicted, which may be linked to a functional role in P. nigrum. The GO and KEGG functional annotations predicted their function in the defense responses of plant-pathogen interactions. Furthermore, a transcriptome-assisted FPKM analysis revealed PnPR-1 genes mapped to the P. nigrum-P. capsici interaction pathway. An altered expression pattern was detected for PnPR-1 transcripts among which a significant upregulation was noted for basic PnPR-1 genes such as CL10113.C1 and Unigene17664. The drastic variation in the transcript levels of CL10113.C1 was further validated through qRT-PCR and it showed a significant upregulation in infected leaf samples compared with the control. A subsequent analysis revealed the structural details, phylogenetic relationships, conserved sequence motifs and critical cis-regulatory elements of PnPR-1 genes. This is the first genome-wide study that identified the role of PR-1 genes during P. nigrum-P. capsici interactions. The detailed in silico experimental analysis revealed the vital role of PnPR-1 genes in regulating the first layer of defense towards a P. capsici infection in Panniyur-1 plants.


2022 ◽  
Vol 12 ◽  
Author(s):  
Inge Holm ◽  
Luisa Nardini ◽  
Adrien Pain ◽  
Emmanuel Bischoff ◽  
Cameron E. Anderson ◽  
...  

Almost all regulation of gene expression in eukaryotic genomes is mediated by the action of distant non-coding transcriptional enhancers upon proximal gene promoters. Enhancer locations cannot be accurately predicted bioinformatically because of the absence of a defined sequence code, and thus functional assays are required for their direct detection. Here we used a massively parallel reporter assay, Self-Transcribing Active Regulatory Region sequencing (STARR-seq), to generate the first comprehensive genome-wide map of enhancers in Anopheles coluzzii, a major African malaria vector in the Gambiae species complex. The screen was carried out by transfecting reporter libraries created from the genomic DNA of 60 wild A. coluzzii from Burkina Faso into A. coluzzii 4a3A cells, in order to functionally query enhancer activity of the natural population within the homologous cellular context. We report a catalog of 3,288 active genomic enhancers that were significant across three biological replicates, 74% of them located in intergenic and intronic regions. The STARR-seq enhancer screen is chromatin-free and thus detects inherent activity of a comprehensive catalog of enhancers that may be restricted in vivo to specific cell types or developmental stages. Testing of a validation panel of enhancer candidates using manual luciferase assays confirmed enhancer function in 26 of 28 (93%) of the candidates over a wide dynamic range of activity from two to at least 16-fold activity above baseline. The enhancers occupy only 0.7% of the genome, and display distinct composition features. The enhancer compartment is significantly enriched for 15 transcription factor binding site signatures, and displays divergence for specific dinucleotide repeats, as compared to matched non-enhancer genomic controls. The genome-wide catalog of A. coluzzii enhancers is publicly available in a simple searchable graphic format. This enhancer catalogue will be valuable in linking genetic and phenotypic variation, in identifying regulatory elements that could be employed in vector manipulation, and in better targeting of chromosome editing to minimize extraneous regulation influences on the introduced sequences.Importance: Understanding the role of the non-coding regulatory genome in complex disease phenotypes is essential, but even in well-characterized model organisms, identification of regulatory regions within the vast non-coding genome remains a challenge. We used a large-scale assay to generate a genome wide map of transcriptional enhancers. Such a catalogue for the important malaria vector, Anopheles coluzzii, will be an important research tool as the role of non-coding regulatory variation in differential susceptibility to malaria infection is explored and as a public resource for research on this important insect vector of disease.


Author(s):  
Yunkai Zhu ◽  
Fei Feng ◽  
Gaowei Hu ◽  
Yuyan Wang ◽  
Yin Yu ◽  
...  

SUMMARYThe global spread of SARS-CoV-2 is posing major public health challenges. One unique feature of SARS-CoV-2 spike protein is the insertion of multi-basic residues at the S1/S2 subunit cleavage site, the function of which remains uncertain. We found that the virus with intact spike (Sfull) preferentially enters cells via fusion at the plasma membrane, whereas a clone (Sdel) with deletion disrupting the multi-basic S1/S2 site instead utilizes a less efficient endosomal entry pathway. This idea was supported by the identification of a suite of endosomal entry factors specific to Sdel virus by a genome-wide CRISPR-Cas9 screen. A panel of host factors regulating the surface expression of ACE2 was identified for both viruses. Using a hamster model, animal-to-animal transmission with the Sdel virus was almost completely abrogated, unlike with Sfull. These findings highlight the critical role of the S1/S2 boundary of the SARS-CoV-2 spike protein in modulating virus entry and transmission.


2011 ◽  
Vol 195 (6) ◽  
pp. i9-i9 ◽  
Author(s):  
Bart A. Westerman ◽  
A. Koen Braat ◽  
Nicole Taub ◽  
Marko Potman ◽  
Joseph H.A. Vissers ◽  
...  

2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
Jing Shen ◽  
Shuang Wang ◽  
Abby B. Siegel ◽  
Helen Remotti ◽  
Qiao Wang ◽  
...  

Background.Previous studies, including ours, have examined the regulation of microRNAs (miRNAs) by DNA methylation, but whether this regulation occurs at a genome-wide level in hepatocellular carcinoma (HCC) is unclear.Subjects/Methods.Using a two-phase study design, we conducted genome-wide screening for DNA methylation and miRNA expression to explore the potential role of methylation alterations in miRNAs regulation.Results.We found that expressions of 25 miRNAs were statistically significantly different between tumor and nontumor tissues and perfectly differentiated HCC tumor from nontumor. Six miRNAs were overexpressed, and 19 were repressed in tumors. Among 133 miRNAs with inverse correlations between methylation and expression, 8 miRNAs (6%) showed statistically significant differences in expression between tumor and nontumor tissues. Six miRNAs were validated in 56 additional paired HCC tissues, and significant inverse correlations were observed for miR-125b and miR-199a, which is consistent with the inactive chromatin pattern found in HepG2 cells.Conclusion.These data suggest that the expressions of miR-125b and miR-199a are dramatically regulated by DNA hypermethylation that plays a key role in hepatocarcinogenesis.


2010 ◽  
Vol 30 (11) ◽  
pp. 2837-2848 ◽  
Author(s):  
Vanessa Gobert ◽  
Dani Osman ◽  
Stéphanie Bras ◽  
Benoit Augé ◽  
Muriel Boube ◽  
...  

ABSTRACT Transcription factors of the RUNX and GATA families play key roles in the control of cell fate choice and differentiation, notably in the hematopoietic system. During Drosophila hematopoiesis, the RUNX factor Lozenge and the GATA factor Serpent cooperate to induce crystal cell differentiation. We used Serpent/Lozenge-activated transcription as a paradigm to identify modulators of GATA/RUNX activity by a genome-wide RNA interference screen in cultured Drosophila blood cells. Among the 129 factors identified, several belong to the Mediator complex. Mediator is organized in three modules plus a regulatory “CDK8 module,” composed of Med12, Med13, CycC, and Cdk8, which has long been thought to behave as a single functional entity. Interestingly, our data demonstrate that Med12 and Med13 but not CycC or Cdk8 are essential for Serpent/Lozenge-induced transactivation in cell culture. Furthermore, our in vivo analysis of crystal cell development show that, while the four CDK8 module subunits control the emergence and the proliferation of this lineage, only Med12 and Med13 regulate its differentiation. We thus propose that Med12/Med13 acts as a coactivator for Serpent/Lozenge during crystal cell differentiation independently of CycC/Cdk8. More generally, we suggest that the set of conserved factors identified herein may regulate GATA/RUNX activity in mammals.


Sign in / Sign up

Export Citation Format

Share Document