scholarly journals A Genome-Wide RNA Interference Screen Identifies a Differential Role of the Mediator CDK8 Module Subunits for GATA/ RUNX-Activated Transcription in Drosophila

2010 ◽  
Vol 30 (11) ◽  
pp. 2837-2848 ◽  
Author(s):  
Vanessa Gobert ◽  
Dani Osman ◽  
Stéphanie Bras ◽  
Benoit Augé ◽  
Muriel Boube ◽  
...  

ABSTRACT Transcription factors of the RUNX and GATA families play key roles in the control of cell fate choice and differentiation, notably in the hematopoietic system. During Drosophila hematopoiesis, the RUNX factor Lozenge and the GATA factor Serpent cooperate to induce crystal cell differentiation. We used Serpent/Lozenge-activated transcription as a paradigm to identify modulators of GATA/RUNX activity by a genome-wide RNA interference screen in cultured Drosophila blood cells. Among the 129 factors identified, several belong to the Mediator complex. Mediator is organized in three modules plus a regulatory “CDK8 module,” composed of Med12, Med13, CycC, and Cdk8, which has long been thought to behave as a single functional entity. Interestingly, our data demonstrate that Med12 and Med13 but not CycC or Cdk8 are essential for Serpent/Lozenge-induced transactivation in cell culture. Furthermore, our in vivo analysis of crystal cell development show that, while the four CDK8 module subunits control the emergence and the proliferation of this lineage, only Med12 and Med13 regulate its differentiation. We thus propose that Med12/Med13 acts as a coactivator for Serpent/Lozenge during crystal cell differentiation independently of CycC/Cdk8. More generally, we suggest that the set of conserved factors identified herein may regulate GATA/RUNX activity in mammals.

2000 ◽  
Vol 20 (14) ◽  
pp. 5256-5260 ◽  
Author(s):  
Jeffery D. Molkentin ◽  
Kevin M. Tymitz ◽  
James A. Richardson ◽  
Eric N. Olson

ABSTRACT Members of the GATA family of transcription factors play important roles in cell fate specification, differentiation, and morphogenesis during mammalian development. GATA5, the only one of the six vertebrate GATA factor genes not yet inactivated in mice, is expressed in a pattern that overlaps with but is distinct from that of other GATA factor genes. During mouse embryogenesis, GATA5 is expressed first in the developing heart and subsequently in the lung, vasculature, and genitourinary system. To investigate the function of GATA5 in vivo, we created mice homozygous for a GATA5 null allele. Homozygous mutants were viable and fertile, but females exhibited pronounced genitourinary abnormalities that included vaginal and uterine defects and hypospadias. In contrast, the genitourinary system was unaffected in male GATA5 mutants. These results reveal a specific role of GATA5 in development of the female genitourinary system and suggest that other GATA factors may have functions overlapping those of GATA5 in other tissues.


2020 ◽  
Author(s):  
Mengqi Chu ◽  
Haitao Wan ◽  
Xiaobo Zhang

Abstract Background: Cancer stem cells play essential roles in tumorigenesis, thus being the important targets for tumor therapy. The hnRNP family proteins, the important splicing factors, are found to be associated with tumor progression. However, the influence of hnRNPs on cancer stem cells has not been extensively explored.Methods: Quantitative real-time PCR and Western blot were used to examine the gene expression level. RNA immunoprecipitation assay and RNA sequencing were conducted to identify the RNAs interacted with hnRNP A2B1 on a genome-wide scale. The in vivo assays were performed in nude mice.Results: In this study, the results showed that hnRNP A2B1 of 19 hnRNPs was significantly upregulated in melanoma stem cells compared with non-stem cells, suggesting the important role of hnRNP A2B1 in cancer stem cells. The hnRNP A2B1 silencing triggered the cell cycle arrest in G2 phase, leading to apoptosis of melanoma stem cells. The results revealed that hnRNP A2B1 could bind to the precursor mRNAs of pro-apoptosis genes (DAPK1, SYT7 and RNF128) and anti-apoptosis genes (EIF3H, TPPP3 and DOCK2) to regulate the splicing of these 6 genes, thus promoting the expressions of anti-apoptosis genes and suppressing the expressions of pro-apoptosis genes. The in vivo data indicated that hnRNP A2B1 was required for tumorigenesis of melanoma stem cells in vivo by affecting the splicing of TPPP3, DOCK2, EIF3H, RNF128, DAPK1 and SYT7, thus suppressing apoptosis of melanoma stem cells.Conclusions: HnRNP A2B1 was required for tumorigenesis of melanoma stem cells. Therefore our findings presented novel molecular insights into the roles of hnRNPs in cancer stem cells.


2016 ◽  
Vol 36 (suppl_1) ◽  
Author(s):  
Huifeng Hao ◽  
Sheng Hu ◽  
Dawei Bu ◽  
Xiaogang Sun ◽  
Miao Wang

CXCR7 is a non-classical chemokine receptor for CXCL12, whose gene represents a genome-wide association locus for coronary artery disease. Global deletion of CXCR7 increased experimentally induced neointimal formation and atherosclerosis in hyperlipidemic mice, with evidence that CXCR7 modified cholesterol uptake to adipose tissue. We found that CXCR7 was expressed in endothelial cells of mouse neointima and human aortic lesions. To examine a role of endothelial CXCR7 in vascular remodeling, endothelial CXCR7 inducible knockout mice were studied for their vascular response to wire injury in femoral arteries. Tamoxifen treatment of mice harboring floxed CXCR7 and Cdh5 -promoter driven CreERT2 , essentially abolished endothelial CXCR7 expression in vitro and in vivo. Postnatal deletion of endothelial CXCR7 exacerbated neointimal formation on normalipidemic background, four weeks after injury. Mechanistically, this was attributable to attenuated endothelial repair following endothelial injury. Collectively, endothelial CXCR7 is a key regulator of vascular remodeling, independent of lipid traits.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. SCI-30-SCI-30 ◽  
Author(s):  
Tariq Enver

Abstract Abstract SCI-30 Several studies have addressed questions about transcriptional regulation within particular hematopoietic cell compartments. Few, however, have attempted to capture the transcriptional changes that occur during the dynamic transition from one compartment to another. We have profiled gene expression as multipotential progenitors underwent commitment and differentiation to two alternative lineages, focusing on the first 3 days of differentiation when the majority of decisions about cell fate are made. We have combined this with genome-wide identification of the targets of three key transcription factors before and after differentiation; GATA-2, usually associated with the stem/progenitor compartment; GATA-1 (erythroid); and PU.1 (myeloid). These data have been compiled into a custom-made queryable database, designed to be intuitive to use and to provide tools to interrogate the data on many levels. We used correlation analyses to associate transcription factor binding with particular modules of co-expressed genes, alongside detailed sequence analysis of bound regions. These approaches have informed our understanding of GATA factor switching, and highlighted novel roles for both GATA-2 and Pu.1 in erythroid cells. Overall, the data reveal greater degree of complexity in the interplay between these three factors in regulating hematopoiesis than has hitherto been described, and highlights the importance of a genome-wide approach to understanding complex regulatory systems. A significant challenge in the field is how to relate these types of population-based data to the action of transcriptional regulators within single cells where cell fate decisions ultimately are affected. As a step toward this, we have generated single cell profiles of gene expression for a limited set of transcriptional regulators in self-renewing and committed blood cells and used these data to build a stochastic computational model, which affords exploration of commitment scenarios in silico. Disclosures: No relevant conflicts of interest to declare.


2019 ◽  
Author(s):  
Marco Galardini ◽  
Olivier Clermont ◽  
Alexandra Baron ◽  
Bede Busby ◽  
Sara Dion ◽  
...  

AbstractThe genus Escherichia is composed of several species and cryptic clades, including E. coli, which behave as a vertebrate gut commensal, but also as an opportunistic pathogen involved in both diarrheic and extra-intestinal diseases. To characterize the genetic determinants of extra-intestinal virulence within the genus, we carried out an unbiased genome-wide association study (GWAS) on 370 commensal, pathogenic and environmental strains representative of the Escherichia genus phylogenetic diversity and including E. albertii (n=7), E. fergusonii (n=5), Escherichia clades (n=32) and E. coli (n=326), tested in a mouse model of sepsis. We found that the high-pathogenicity island (HPI), a ∼35 kbp gene island encoding the yersiniabactin siderophore, is highly associated with death in mice, surpassing other associated genetic factors also related to iron uptake, such as the aerobactin and the sitABCD operons. We validated the association in vivo by deleting key components of the HPI in E. coli strains in two phylogenetic backgrounds, and found that virulence is correlated in E. coli with growth in the presence of various stressors including several antimicrobials, which hints at collateral sensitivities associated with intrinsic virulence. This study points to the major role of iron capture systems in the extra-intestinal virulence of the genus Escherichia and the collateral effects on cell growth of such systems.


Genes ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 1007
Author(s):  
Divya Kattupalli ◽  
Asha Sreenivasan ◽  
Eppurathu Vasudevan Soniya

Black pepper (Piper nigrum L.) is a prominent spice that is an indispensable ingredient in cuisine and traditional medicine. Phytophthora capsici, the causative agent of footrot disease, causes a drastic constraint in P. nigrum cultivation and productivity. To counterattack various biotic and abiotic stresses, plants employ a broad array of mechanisms that includes the accumulation of pathogenesis-related (PR) proteins. Through a genome-wide survey, eleven PR-1 genes that belong to a CAP superfamily protein with a caveolin-binding motif (CBM) and a CAP-derived peptide (CAPE) were identified from P. nigrum. Despite the critical functional domains, PnPR-1 homologs differ in their signal peptide motifs and core amino acid composition in the functional protein domains. The conserved motifs of PnPR-1 proteins were identified using MEME. Most of the PnPR-1 proteins were basic in nature. Secondary and 3D structure analyses of the PnPR-1 proteins were also predicted, which may be linked to a functional role in P. nigrum. The GO and KEGG functional annotations predicted their function in the defense responses of plant-pathogen interactions. Furthermore, a transcriptome-assisted FPKM analysis revealed PnPR-1 genes mapped to the P. nigrum-P. capsici interaction pathway. An altered expression pattern was detected for PnPR-1 transcripts among which a significant upregulation was noted for basic PnPR-1 genes such as CL10113.C1 and Unigene17664. The drastic variation in the transcript levels of CL10113.C1 was further validated through qRT-PCR and it showed a significant upregulation in infected leaf samples compared with the control. A subsequent analysis revealed the structural details, phylogenetic relationships, conserved sequence motifs and critical cis-regulatory elements of PnPR-1 genes. This is the first genome-wide study that identified the role of PR-1 genes during P. nigrum-P. capsici interactions. The detailed in silico experimental analysis revealed the vital role of PnPR-1 genes in regulating the first layer of defense towards a P. capsici infection in Panniyur-1 plants.


Cancers ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 153
Author(s):  
Sabrina Daniela da Silva ◽  
Fabio Albuquerque Marchi ◽  
Jie Su ◽  
Long Yang ◽  
Ludmila Valverde ◽  
...  

Invasive oral squamous cell carcinoma (OSCC) is often ulcerated and heavily infiltrated by pro-inflammatory cells. We conducted a genome-wide profiling of tissues from OSCC patients (early versus advanced stages) with 10 years follow-up. Co-amplification and co-overexpression of TWIST1, a transcriptional activator of epithelial-mesenchymal-transition (EMT), and colony-stimulating factor-1 (CSF1), a major chemotactic agent for tumor-associated macrophages (TAMs), were observed in metastatic OSCC cases. The overexpression of these markers strongly predicted poor patient survival (log-rank test, p = 0.0035 and p = 0.0219). Protein analysis confirmed the enhanced expression of TWIST1 and CSF1 in metastatic tissues. In preclinical models using OSCC cell lines, macrophages, and an in vivo matrigel plug assay, we demonstrated that TWIST1 gene overexpression induces the activation of CSF1 while TWIST1 gene silencing down-regulates CSF1 preventing OSCC invasion. Furthermore, excessive macrophage activation and polarization was observed in co-culture system involving OSCC cells overexpressing TWIST1. In summary, this study provides insight into the cooperation between TWIST1 transcription factor and CSF1 to promote OSCC invasiveness and opens up the potential therapeutic utility of currently developed antibodies and small molecules targeting cancer-associated macrophages.


Circulation ◽  
2014 ◽  
Vol 130 (suppl_2) ◽  
Author(s):  
Jennifer Davis ◽  
Michelle Sargent ◽  
Jianjian Shi ◽  
Lei Wei ◽  
Maurice S Swanson ◽  
...  

Rationale: During the cardiac injury response fibroblasts differentiate into myofibroblasts, a cell type that enhances extracellular matrix production and facilitates ventricular remodeling. To better understand the molecular mechanisms whereby myofibroblasts are generated in the heart we performed a genome-wide screen with 18,000 cDNAs, which identified the RNA-binding protein muscleblind-like splicing regulator 1 (MBNL1), suggesting a novel association between mRNA alternative splicing and the regulation of myofibroblast differentiation. Objective: To determine the mechanism whereby MBNL1 regulates myofibroblast differentiation and the cardiac fibrotic response. Methods and Results: Confirming the results from our genome wide screen, adenoviral-mediated overexpression of MBNL1 promoted transformation of rat cardiac fibroblasts and mouse embryonic fibroblasts (MEFs) into myofibroblasts, similar to the level of conversion obtained by the profibrotic agonist transforming growth factor β (TGFβ). Antithetically, Mbnl1 -/- MEFs were refractory to TGFβ-induced myofibroblast differentiation. MBNL1 expression is induced in transforming fibroblasts in response to TGFβ and angiotensin II. These results were extended in vivo by analysis of dermal wound healing, a process dependent on myofibroblast differentiation and their proper activity. By day 6 control mice had achieved 82% skin wound closure compared with only 40% in Mbnl1 -/- mice. Moreover, Mbnl1 -/- mice had reduced survival following myocardial infarction injury due to defective fibrotic scar formation and healing. High throughput RNA sequencing (RNAseq) and RNA immunoprecipitation revealed that MBNL1 directly regulates the alternative splicing of transcripts for myofibroblast signaling factors and cytoskeletal-assembly elements. Functional analysis of these factors as mediators of MBNL1 activity is also described here. Conclusions: Collectively, our data suggest that MBNL1 coordinates myofibroblast transformation by directly mediating the alternative splicing of an array of mRNAs encoding differentiation-specific signaling transcripts, which then alter the fibroblast proteome for myofibroblast structure and function.


Sign in / Sign up

Export Citation Format

Share Document