Abstract 1807: miRNA alterations associated with transition of advanced castration-resistant prostate cancer to neuroendocrine prostate cancer

Author(s):  
Divya Bhagirath ◽  
Thao Yang ◽  
Laura Tabatabai ◽  
Shahana Majid ◽  
Rajvir Dahiya ◽  
...  
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Divya Bhagirath ◽  
Michael Liston ◽  
Theresa Akoto ◽  
Byron Lui ◽  
Barbara A. Bensing ◽  
...  

AbstractNeuroendocrine prostate cancer (NEPC), a highly aggressive variant of castration-resistant prostate cancer (CRPC), often emerges upon treatment with androgen pathway inhibitors, via neuroendocrine differentiation. Currently, NEPC diagnosis is challenging as available markers are not sufficiently specific. Our objective was to identify novel, extracellular vesicles (EV)-based biomarkers for diagnosing NEPC. Towards this, we performed small RNA next generation sequencing in serum EVs isolated from a cohort of CRPC patients with adenocarcinoma characteristics (CRPC-Adeno) vs CRPC-NE and identified significant dysregulation of 182 known and 4 novel miRNAs. We employed machine learning algorithms to develop an ‘EV-miRNA classifier’ that could robustly stratify ‘CRPC-NE’ from ‘CRPC-Adeno’. Examination of protein repertoire of exosomes from NEPC cellular models by mass spectrometry identified thrombospondin 1 (TSP1) as a specific biomarker. In view of our results, we propose that a miRNA panel and TSP1 can be used as novel, non-invasive tools to identify NEPC and guide treatment decisions. In conclusion, our study identifies for the first time, novel non-invasive exosomal/extracellular vesicle based biomarkers for detecting neuroendocrine differentiation in advanced castration resistant prostate cancer patients with important translational implications in clinical management of these patients that is currently extremely challenging.


2021 ◽  
Vol 27 ◽  
Author(s):  
Cuijian Zhang ◽  
Jinqin Qian ◽  
Yucai Wu ◽  
Zhenpeng Zhu ◽  
Wei Yu ◽  
...  

Background: Therapy-related neuroendocrine prostate cancer (NEPC) is a lethal castration-resistant prostate cancer (CRPC) subtype that, at present, lacks well-characterized molecular biomarkers. The clinical diagnosis of this disease is dependent on biopsy and histological assessment: methods that are experience-based and easily misdiagnosed due to tumor heterogeneity. The development of robust diagnostic tools for NEPC may assist clinicians in making medical decisions on the choice of continuing anti-androgen receptor therapy or switching to platinum-based chemotherapy.Methods: Gene expression profiles and clinical characteristics data of 208 samples of metastatic CRPC, including castration-resistant prostate adenocarcinoma (CRPC-adeno) and castration-resistant neuroendocrine prostate adenocarcinoma (CRPC-NE), were obtained from the prad_su2c_2019 dataset. Weighted Gene Co-expression Network Analysis (WGCNA) was subsequently used to construct a free-scale gene co-expression network to study the interrelationship between the potential modules and clinical features of metastatic prostate adenocarcinoma and to identify hub genes in the modules. Furthermore, the least absolute shrinkage and selection operator (LASSO) regression analysis was used to build a model to predict the clinical characteristics of CRPC-NE. The findings were then verified in the nepc_wcm_2016 dataset.Results: A total of 51 co-expression modules were successfully constructed using WGCNA, of which three co-expression modules were found to be significantly associated with the neuroendocrine features and the NEPC score. In total, four novel genes, including NPTX1, PCSK1, ASXL3, and TRIM9, were all significantly upregulated in NEPC compared with the adenocarcinoma samples, and these genes were all associated with the neuroactive ligand receptor interaction pathway. Next, the expression levels of these four genes were used to construct an NEPC diagnosis model, which was successfully able to distinguish CRPC-NE from CRPC-adeno samples in both the training and the validation cohorts. Moreover, the values of the area under the receiver operating characteristic (AUC) were 0.995 and 0.833 for the training and validation cohorts, respectively.Conclusion: The present study identified four specific novel biomarkers for therapy-related NEPC, and these biomarkers may serve as an effective tool for the diagnosis of NEPC, thereby meriting further study.


2020 ◽  
Author(s):  
Matthew J Mosquera ◽  
Rohan Bareja ◽  
Jacob M Bernheim ◽  
Muhammad Asad ◽  
Cynthia Cheung ◽  
...  

Following treatment with androgen receptor (AR) pathway inhibitors, ~20% of prostate cancer patients progress by shedding their dependence on AR. These tumors undergo epigenetic reprogramming turning castration-resistant prostate cancer adenocarcinoma (CRPC-Adeno) into neuroendocrine prostate cancer (CRPC-NEPC). Currently, no targeted therapies are available for CRPC-NEPCs. A major hurdle in the development of new therapies and treatment of CRPC-NEPC is the lack of accurate models to test candidate treatments. Such models would ideally capture components of the tumor microenvironment (TME) factors, which likely regulate the phenotypic, genetic, and epigenetic underpinnings of this aggressive subset. The TME is a complex system comprised not only of malignant prostate cells but also stromal and inflammatory cells and a scaffold of extracellular matrix (ECM). ECM proteins are implicated in the survival and progression of cancer and development of chemoresistance, while are equally integral to the development of prostate cancer organoids. Here, using a combination of patient tumor proteomics and RNA sequencing, we define putative ECM cues that may guide the growth of prostate tumors in patients. Using this molecular information, we developed synthetic hydrogels that recapitulate the tumor ECM. Organoids cultured in the synthetic hydrogel niches demonstrate that ECM subtypes regulate the morphology, transcriptome, and epigenetics hallmarks of CRPC-Adeno and CRPC-NEPC. CRPC-NEPC organoid showed a differential response to small molecule inhibitors of epigenetic repressor EZH2 and Dopamine Receptor D2 (DRD2), the latter being a novel target in CRPC-NEPC when grown in tumor-specific ECM. Finally, in those synthetic ECM niches where drug resistance was observed in CRPC-NEPCs, cellular reprogramming by a synergistic combination of EZH2 inhibitors with DRD2 antagonists inhibited tumor growth. The synthetic platform can provide a more realistic prostate-specific microenvironment and subsequently enable the development of effective targeted therapeutics for prostate cancers.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Ada Gjyrezi ◽  
Giuseppe Galletti ◽  
Jiaren Zhang ◽  
Daniel Worroll ◽  
Michael Sigouros ◽  
...  

AbstractQuantitation of androgen receptor variant (AR-V) expression in circulating tumor cells (CTCs) from patients with metastatic castration-resistant prostate cancer (mCRPC) has great potential for treatment customization. However, the absence of a uniform CTC isolation platform and consensus on an analytical assay has prevented the incorporation of these measurements in routine clinical practice. Here, we present a single-CTC sensitive digital droplet PCR (ddPCR) assay for the quantitation of the two most common AR-Vs, AR-V7, and AR-v567es, using antigen agnostic CTC enrichment. In a cohort of 29 mCRPC patients, we identify AR-V7 in 66% and AR-v567es in 52% of patients. These results are corroborated using another gene expression platform (NanoStringTM) and by analysis of RNA-Seq data from patients with mCRPC (SU2C- PCF Dream Team). We next quantify AR-V expression in matching EpCAM-positive vs EpCAM-negative CTCs, as EpCAM-based CTC enrichment is commonly used. We identify lower AR-V prevalence in the EpCAM-positive fraction, suggesting that EpCAM-based CTC enrichment likely underestimates AR-V prevalence. Lastly, using single CTC analysis we identify enrichment for AR-v567es in patients with neuroendocrine prostate cancer (NEPC) indicating that AR-v567es may be involved in lineage plasticity, which warrants further mechanistic interrogation.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Shubham Dwivedi ◽  
Maricris Bautista ◽  
Sanskriti Shrestha ◽  
Hussain Elhasasna ◽  
Tanaya Chaphekar ◽  
...  

AbstractThe progression of prostate cancer (PC) into neuroendocrine prostate cancer (NEPC) is a major challenge in treating PC. In NEPC, the PC cells undergo neuroendocrine differentiation (NED); however, the exact molecular mechanism that triggers NED is unknown. Peripheral nerves are recently shown to promote PC. However, their contribution to NEPC was not studied well. In this study, we explored whether sympathetic neurosignaling contributes to NED. We found that human prostate tumors from patients that later developed metastases and castration-resistant prostate cancer (CRPC), a stage preceding to NEPC, have high sympathetic innervations. Our work revealed that high concentrations of the sympathetic neurotransmitter norepinephrine (NE) induces NED-like changes in PC cells in vitro, evident by their characteristic cellular and molecular changes. The NE-mediated NED was effectively inhibited by the Adrβ2 blocker propranolol. Strikingly, propranolol along with castration also significantly inhibited the development and progression of NEPC in vivo in an orthotopic NEPC model. Altogether, our results indicate that the NE-Adrβ2 axis is a potential therapeutic intervention point for NEPC.


2014 ◽  
Vol 32 (4_suppl) ◽  
pp. 204-204 ◽  
Author(s):  
Gurveen Kaur ◽  
Beerinder Singh ◽  
Himisha Beltran ◽  
Naveed Hassan Akhtar ◽  
David M. Nanus ◽  
...  

204 Background: Neuroendocrine prostate cancer (NEPC) is an aggressive variant of prostate cancer. Circulating tumor cell (CTC) counts as measured by CellSearch are prognostic for large groups with metastatic prostate cancer (PC), but are not well described in NEPC. Methods: With institutional review board approval, we retrospectively identified patients with metastatic PC and available CTC enumeration (CellSearch methodology) and compared counts/7.5 mL blood and overall survival (OS), measured from the first recorded CTC count until death or last follow up. Entry criteria for clinical trials were used to define NEPC, including histology (small cell/neuroendocrine carcinoma or adenocarcinoma with more than 50% NE staining), serum chromogranin greater than 5x ULN and/or neuron specific enolase greater than 2x ULN, and/or predominant liver/brain metastases with lack of prostate-specific antigen [Beltran ASCO 2013, clinicaltrials.gov NCT01799278 ]. Frequency of detectable and unfavorable counts was tabulated and OS was compared across groups. Results: Sixty one patients were identified: 21 NEPC with median age 73.7 and 40 patients with castration-resistant prostate cancer (CRPC) with median age 73.9 over contemporary time periods 2009 to 2012. Median OS for the entire group was 22.6 months (mo), with a trend for shorter OS in NEPC (20.7 mo) than CRPC (22.7 mo), p=0.11. 47.6% of NEPC and 55% of CRPC had detectable CTC counts (p=0.58); 38.1% of NEPC and 40.0% of CRPC had greater than or equal to five CTCs (p=0.89). CTC counts of 0 to 4 versus greater than or equal to five were prognostic for both groups: NEPC with 0 to 4 CTCs had median OS of 22.6 versus 6.6 mo for CTCs greater than or equal to 5 (p<0.001) and CRPC with 0 to 4 CTCs median OS not reached (mean 40.6 mo) versus 11.2 mo for those with greater than or equal to five CTCs (p<0.001). Conclusions: Patients with NEPC have similar frequency of detectable and elevated CTC counts by CellSearch methodology as compared to an overall CRPC population. CTC counts are prognostic for both groups.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Zhi Long ◽  
Liang Deng ◽  
Chao Li ◽  
Qiangrong He ◽  
Yao He ◽  
...  

AbstractThe rising of a highly aggressive subtype of castration-resistant prostate cancer (CRPC) named treatment-induced neuroendocrine prostate cancer (t-NEPC) after androgen deprivation therapy (ADT) is well known for its features of the neuroendocrine differentiation (NED) and androgen receptor (AR) independence. However, t-NEPC is still largely unknown. Here, we found that EHF is notably depressed in t-NEPC tumors, patient-derived xenografts, transgenic mice, and cell models. Results from cell lines uncovered that ADT represses EHF expression, which is required for the ADT-induced NED. Mechanism dissection revealed that ADT decreases the EHF transcription via relieving the AR binding to different androgen-responsive elements, which then promotes the expression and enzymatic activity of enhancer of zeste homolog 2 (EZH2), consequently catalyzing tri-methylation lysine 27 of histone H3 for transcriptional repression of its downstream genes to promote the NED. Furthermore, preclinical studies from cell and mice models proved that recovery of EHF expression or using EZH2 inhibitor can attenuate aggressive properties of CRPC cells, hinder the progression of t-NEPC, and promote the response of CPRC cells to enzalutamide. Together, we elucidate that the ADT/AR/EHF/EZH2 signaling is required for the ADT-enhanced NED and plays a critical role in the progression of t-NEPC.


Sign in / Sign up

Export Citation Format

Share Document