Abstract MIP-075: SOMATIC MUTATIONS AND COPY-NUMBER VARIATIONS IN OVARIAN CANCERS VIA TARGETED SEQUENCING OF EXONS OF 300 CANCER-ASSOCIATED GENES, INCLUDING MULTIPLE DNA DAMAGE REPAIR GENES

Author(s):  
Elizabeth Stover ◽  
Brooke Howitt ◽  
Levi Garraway ◽  
Ursula Matulonis
Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 1677-1677
Author(s):  
Antonella Padella ◽  
Giorgia Simonetti ◽  
Marco Manfrini ◽  
Maria Chiara Fontana ◽  
Giovanni Marconi ◽  
...  

Abstract BRCA1 is one of the most important gene associated with familial breast and ovarian cancer susceptibility and is involved in the DNA damage repair and cell cycle arrest. Alterations in BRCA1 and their consequences are well characterized in breast and ovarian tumors, while little is known about its role in Acute Myeloid Leukemia (AML). We aimed to investigate the frequency and the interplay of BRCA1 alterations and patterns of somatic mutations (SNVs) and copy number variations (CNVs) of in AML patients. We genotyped 118 AML samples at either diagnosis or relapse by Single Nucleotide Polymorphism (SNP) array (SNP6.0 and Cytoscan HD, Affymetrix) to detect CNVs. In addition, we performed Whole-Exome Sequencing (WES, 100 bp paired-end, Illumina) of 56 genotyped AML patients to detect SNVs and small indels (MuTect and Varscan 2.0). Differences in survival were assessed using Kaplan-Meier survival analysis and Long-Rank test, or Breslow when indicated. We detected BRCA1 loss in 14 out of 118 patients (12%), ranging from 1,6 Kb to the loss of the entire chromosome 17, with none of the BRCA1 loss patients having a normal karyotype. Moreover, BRCA1 losses significantly co-occurred with PALB2 and RAD50 losses. Notably, the PALB2 loss (chromosome 16) mostly involved exon 12 and was detected also in patients without the BRCA1 loss, with a frequency of 11 out of 118 cases (9%), suggesting a pivotal and previously undescribed role in AML pathogenesis. BRCA1 loss patients were enriched for copy number alterations in genes involved in the regulation of mitotic recombination, DNA repair and positive regulation of kinase activity compared with BRCA1 wild-type cases (p <0.01). To investigate which genes and biological functions cooperates with the pathways affected by structural alterations, we integrated the analysis with WES data on 56 out of 118 AML patients. We focused on the genes involved in the DNA damage repair (DDR) and we identified somatic SNVs in BRCA1, TP53 and in the Fanconi Anemia genes BRCA2 and FANCE. Analysis of co-occurrence and mutual exclusivity revealed that BRCA1 loss and DDR-related alterations (BRCA1, PALB2, BRCA2, and FANCE) were significantly associated with TP53 alterations (p=0.0001 and p=0.0003, respectively). In addition, alterations in the DDR genes were mutually exclusive with mutations in KRAS, IDH1/2, BCOR, BCORL1, NPM1 and myeloid transcription factors as RUNX1 and CEBPA. Notably, patients without alteration in the DDR genes were enriched for mutations in DNMT3A and FLT3. Finally, BRCA1 and PALB2 alterations defined group of patients with poor overall survival (OS). In particular, patients with alterations of either BRCA1 or PALB2 had a worst prognosis compared to patients without alterations in the two genes (p=0.009 and p=0.001, respectively). Patients harboring PALB2 loss had a poorer prognosis compared with patients with complex karyotype (p=0.021, Breslow test). In addition, double BRCA1 and PALB2 loss, single BRAC1 or PALB2 hits and lack of alterations in BRCA1 and PALB2 defined three different classes of risks in our AML cohort (p<0.001). In summary, we define for the first time a novel subgroup of AML patients characterized by alterations targeting the DDR pathway, and in particular the BRCA1 and PALB2 genes. Our data suggest that a signature of genes involved in the DDR and cell cycle regulation synergize and led to the uncontrolled proliferation, independently of DNA damage accumulation. Our results may help improve patient stratification and define ad hoc therapeutic strategies for this aggressive leukemia type. Acknowledgments: ELN, AIL, AIRC, progetto Regione-Università 2010-12 (L. Bolondi), Fondazione del Monte di Bologna e Ravenna, FP7 NGS-PTL project. Disclosures Guadagnuolo: CellPly S.r.l.: Employment. Martinelli:Novartis: Speakers Bureau; Genentech: Consultancy; Roche: Consultancy, Speakers Bureau; BMS: Speakers Bureau; Celgene: Consultancy, Speakers Bureau; Amgen: Consultancy, Speakers Bureau; MSD: Consultancy; Pfizer: Consultancy, Speakers Bureau; Ariad: Consultancy, Speakers Bureau.


2021 ◽  
Vol 16 (3) ◽  
pp. S534-S535
Author(s):  
Z. Yu ◽  
S. Dang ◽  
J. Zhang ◽  
J. Duan ◽  
S. Chen ◽  
...  

2015 ◽  
Vol 7 ◽  
pp. e2015046 ◽  
Author(s):  
Sudhansu Sekhar Nishank

Background– Defect in DNA damage repair genes due to oxidative stress predispose the humans to malignancies. There are many cases of association of malignancies with sickle cell disease patients (SCD) throughout the world, the molecular cause of which has never been investigated. DNA damage repair genes such as  hOGG1, XRCC1 and p53 play significant role in repair of DNA damage during oxidative stress but the distribution and clinical effect of these genes are not known till date in SCD patients who are associated with oxidative stress related clinical complications.        Objective – The aim of the study was to characterize the distribution and clinical effect of DNA damage gene polymorphisms p53 (codon 72 Arg> Pro), hOGG1 (codon 326 Ser>Cyst) and XRCC1 (codons 194 Arg>Trp, codon 280 Arg> His, codon 399 Arg> Gln) among SCD patients of  central India. Methods- A case control study of  250 SCD patients and 250 normal individuals were investigated by PCR-RFLP techniques.     Result- The prevalence of mutant alleles of hOGG1 gene, XRCC1 codon 280 Arg>His  were found to be significantly high among SCD patients as compared to controls. However, SCD patients did not show clinical association with any of these DNA repair gene polymorphisms.  Conclusion- This indicates that hOGG1, p53  and XRCC1 gene polymorphisms  may not have any clinical impact among SCD patients in India.


2019 ◽  
Vol 20 (19) ◽  
pp. 4728 ◽  
Author(s):  
Hwani Ryu ◽  
Hyun-Kyung Choi ◽  
Hyo Jeong Kim ◽  
Ah-Young Kim ◽  
Jie-Young Song ◽  
...  

Class III receptor tyrosine kinase (RTK) inhibitors targeting mainly FLT3 or c-KIT have not been well studied in lung cancer. To identify a small molecule potentially targeting class III RTK, we synthesized novel small molecule compounds and identified 5-(4-bromophenyl)-N-(naphthalen-1-yl) oxazol-2-amine (AIU2001) as a novel class III RKT inhibitor. In an in vitro kinase profiling assay, AIU2001 inhibited the activities of FLT3, mutated FLT3, FLT4, and c-KIT of class III RTK, and the proliferation of NSCLC cells in vitro and in vivo. AIU2001 induced DNA damage, reactive oxygen species (ROS) generation, and cell cycle arrest in the G2/M phase. Furthermore, AIU2001 suppressed the DNA damage repair genes, resulting in the ‘BRCAness’/‘DNA-PKness’ phenotype. The mRNA expression level of STAT5 was downregulated by AIU2001 treatment and knockdown of STAT5 inhibited the DNA repair genes. Our results show that compared to either drug alone, the combination of AIU2001 with a poly (ADP-ribose) polymerase (PARP) inhibitor olaparib or irradiation showed synergistic efficacy in H1299 and A549 cells. Hence, our findings demonstrate that AIU2001 is a candidate therapeutic agent for NSCLC and combination therapies with AIU2001 and a PARP inhibitor or radiotherapy may be used to increase the therapeutic efficacy of AIU2001 due to inhibition of DNA damage repair.


Author(s):  
Annemarie E. M. Post ◽  
Johan Bussink ◽  
Fred C. G. J. Sweep ◽  
Paul N. Span

Tamoxifen-induced radioresistance, reported in vitro, might pose a problem for patients who receive neoadjuvant tamoxifen treatment and subsequently receive radiotherapy after surgery. Previous studies suggested that DNA damage repair or cell cycle genes are involved, and could therefore be targeted to preclude the occurrence of cross-resistance. We aimed to characterize the observed cross-resistance by investigating gene expression of DNA damage repair genes and cell cycle genes in estrogen receptor-positive MCF-7 breast cancer cells that were cultured to tamoxifen resistance. RNA sequencing was performed, and expression of genes characteristic for several DNA damage repair pathways was investigated, as well as expression of genes involved in different phases of the cell cycle. The association of differentially expressed genes with outcome after radiotherapy was assessed in silico in a large breast cancer cohort. None of the DNA damage repair pathways showed differential gene expression in tamoxifen-resistant cells compared to wild-type cells. Two DNA damage repair genes were more than two times upregulated (NEIL1 and EME2), and three DNA damage repair genes were more than two times downregulated (PCNA, BRIP1, and BARD1). However, these were not associated with outcome after radiotherapy in the TCGA breast cancer cohort. Genes involved in G1, G1/S, G2, and G2/M phases were lower expressed in tamoxifen-resistant cells compared to wild-type cells. Individual genes that were more than two times upregulated (MAPK13) or downregulated (E2F2, CKS2, GINS2, PCNA, MCM5, and EIF5A2) were not associated with response to radiotherapy in the patient cohort investigated. We assessed the expression of DNA damage repair genes and cell cycle genes in tamoxifen-resistant breast cancer cells. Though several genes in both pathways were differentially expressed, these could not explain the cross-resistance for irradiation in these cells, since no association to response to radiotherapy in the TCGA breast cancer cohort was found.


2020 ◽  
Vol 26 (3) ◽  
pp. 141-153
Author(s):  
Minhao Hu ◽  
Yiyun Lou ◽  
Shuyuan Liu ◽  
Yuchan Mao ◽  
Fang Le ◽  
...  

Abstract Our previous study revealed a higher incidence of gene dynamic mutation in newborns conceived by IVF, highlighting that IVF may be disruptive to the DNA stability of IVF offspring. However, the underlying mechanisms remain unclear. The DNA damage repair system plays an essential role in gene dynamic mutation and neurodegenerative disease. To evaluate the long-term impact of IVF on DNA damage repair genes, we established an IVF mouse model and analyzed gene and protein expression levels of MSH2, MSH3, MSH6, MLH1, PMS2, OGG1, APEX1, XPA and RPA1 and also the amount of H2AX phosphorylation of serine 139 which is highly suggestive of DNA double-strand break (γH2AX expression level) in the brain tissue of IVF conceived mice and their DNA methylation status using quantitative real-time PCR, western blotting and pyrosequencing. Furthermore, we assessed the capacity of two specific non-physiological factors in IVF procedures during preimplantation development. The results demonstrated that the expression and methylation levels of some DNA damage repair genes in the brain tissue of IVF mice were significantly changed at 3 weeks, 10 weeks and 1.5 years of age, when compared with the in vivo control group. In support of mouse model findings, oxygen concentration of in vitro culture environment was shown to have the capacity to modulate gene expression and DNA methylation levels of some DNA damage repair genes. In summary, our study indicated that IVF could bring about long-term alterations of gene and protein expression and DNA methylation levels of some DNA damage repair genes in the brain tissue and these alterations might be resulted from the different oxygen concentration of culture environment, providing valuable perspectives to improve the safety and efficiency of IVF at early embryonic stage and also throughout different life stages.


2017 ◽  
Vol 28 ◽  
pp. v19-v20
Author(s):  
P. Barros ◽  
A.J. Amaral ◽  
L.B. Abrantes ◽  
T. Oliveira ◽  
H. Louro ◽  
...  

2015 ◽  
Vol 14 (10) ◽  
pp. 2321-2331 ◽  
Author(s):  
Adrian P. Wiegmans ◽  
Pei-Yi Yap ◽  
Ambber Ward ◽  
Yi Chieh Lim ◽  
Kum Kum Khanna

Sign in / Sign up

Export Citation Format

Share Document