Application of Genetically Engineered Tubular Epithelial Cells in Kidney Disease

1999 ◽  
Vol 7 (3) ◽  
pp. 267-272 ◽  
Author(s):  
Hitoshi Yokoyama ◽  
Takero Naito ◽  
Takashi Wada ◽  
Vicki Rubin Kelley
2021 ◽  
Vol 21 (2) ◽  
pp. 1266-1271
Author(s):  
Ping Zhao ◽  
Ting Li ◽  
Zhi Li ◽  
Lei Cao ◽  
Youliang Wang ◽  
...  

Gold nanoparticles (GNPs) are widely used in life sciences and medicine due to their simple preparation, stable physical and chemical properties, controllable optical properties and no significant toxicity. However, in recent years, studies have found that there are still many uncertain factors in the application of gold nanoparticles in the field of biomedicine, and there are few studies on the main excretion organs and kidneys of the body, especially the toxicological effects under the disease state have not been reported. Obviously, carrying out relevant research is of great significance for accelerating the clinical application of GNPs. Chronic kidney disease (CKD) is a group of chronic progressive diseases that have high prevalence and high mortality and are serious threats to human life and health. Renal tubular injury and interstitial fibrosis are key factors in renal dysfunction in chronic kidney disease. Drug and toxic kidney damage mostly involve renal tubular epithelial cells; hypoxia is the most common pathological condition of cells. In renal lesions, renal tubular epithelial cells often have hypoxia. Based on this, we propose the hypothesis of this study: glomerular filtration membrane damage in kidney disease, GNPs increase in urine, followed by reabsorption of renal tubular epithelial cells, thereby causing damage to the latter; if accompanied by hypoxia, GNPs it will aggravate renal tubular epithelial cell damage and promote tubulointerstitial fibrosis. In order to verify the above hypothesis, this study used a mouse model of adriamycin nephropathy and tubular epithelial cells and macrophages in vitro, and observed the damage of GNPs on renal tubular epithelial cells by various means, and explored related mechanisms. The results show that under normal oxygen conditions, GNPs can induce autophagy after cell entry, which can damage damaged proteins and organelles to maintain cell survival. In the absence of oxygen, nanoparticles entering cells increase and induce excessive autophagy. In the absence of oxygen, GNPs also aggregate in macrophages, which can cause decreased cell proliferation activity and induce activation of macrophage inflammasome, which induces inflammatory response: GNPs-induced secretion of hypoxic macrophages can be promoted.


2021 ◽  
Vol 22 (14) ◽  
pp. 7532
Author(s):  
Tyrone L. R. Humphries ◽  
Kunyu Shen ◽  
Abishek Iyer ◽  
David W. Johnson ◽  
Glenda C. Gobe ◽  
...  

Coagulopathies common to patients with diabetes and chronic kidney disease (CKD) are not fully understood. Fibrin deposits in the kidney suggest the local presence of clotting factors including tissue factor (TF). In this study, we investigated the effect of glucose availability on the synthesis of TF by cultured human kidney tubular epithelial cells (HTECs) in response to activation of protease-activated receptor 2 (PAR2). PAR2 activation by peptide 2f-LIGRLO-NH2 (2F, 2 µM) enhanced the synthesis and secretion of active TF (~45 kDa) which was blocked by a PAR2 antagonist (I-191). Treatment with 2F also significantly increased the consumption of glucose from the cell medium and lactate secretion. Culturing HTECs in 25 mM glucose enhanced TF synthesis and secretion over 5 mM glucose, while addition of 5 mM 2-deoxyglucose (2DOG) significantly decreased TF synthesis and reduced its molecular weight (~40 kDa). Blocking glycosylation with tunicamycin also reduced 2F-induced TF synthesis while reducing its molecular weight (~36 kDa). In conclusion, PAR2-induced TF synthesis in HTECs is enhanced by culture in high concentrations of glucose and suppressed by inhibiting either PAR2 activation (I-191), glycolysis (2DOG) or glycosylation (tunicamycin). These results may help explain how elevated concentrations of glucose promote clotting abnormities in diabetic kidney disease. The application of PAR2 antagonists to treat CKD should be investigated further.


Biomedicines ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 398
Author(s):  
Yung-Ho Hsu ◽  
Cai-Mei Zheng ◽  
Chu-Lin Chou ◽  
Yi-Jie Chen ◽  
Yu-Hsuan Lee ◽  
...  

Chronic inflammation and oxidative stress significantly contribute to the development and progression of chronic kidney disease (CKD). The NOD-like receptor family pyrin containing domain-3 (NLRP3) inflammasome plays a key role in the inflammatory response. The renal endothelin (ET) system is activated in all cases of CKD. Furthermore, ET-1 promotes renal cellular injury, inflammation, fibrosis and proteinuria. Endothelin-converting enzymes (ECEs) facilitate the final processing step of ET synthesis. However, the roles of ECEs in CKD are not clear. In this study, we investigated the effects of ETs and ECEs on kidney cells. We found that ET-1 and ET-2 expression was significantly upregulated in the renal tissues of CKD patients. ET-1 and ET-2 showed no cytotoxicity on human kidney tubular epithelial cells. However, ET-1 and ET-2 caused endoplasmic reticulum (ER) stress and NLRP3 inflammasome activation in tubular epithelial cells. The ECE inhibitor phosphoramidon induced autophagy. Furthermore, phosphoramidon inhibited ER stress and the NLRP3 inflammasome in tubular epithelial cells. In an adenine diet-induced CKD mouse model, phosphoramidon attenuated the progression of CKD by regulating autophagy, the NLRP3 inflammasome and ER stress. In summary, these findings showed a new strategy to delay CKD progression by inhibiting ECEs through autophagy activation and restraining ER stress and the NLRP3 inflammasome.


2017 ◽  
Vol 312 (1) ◽  
pp. C47-C55 ◽  
Author(s):  
Mirandy S. Li ◽  
Sherry E. Adesina ◽  
Carla L. Ellis ◽  
Jennifer L. Gooch ◽  
Robert S. Hoover ◽  
...  

Zn2+ deficiency (ZnD) is comorbid with chronic kidney disease and worsens kidney complications. Oxidative stress is implicated in the detrimental effects of ZnD. However, the sources of oxidative stress continue to be identified. Since NADPH oxidases (Nox) are the primary enzymes that contribute to renal reactive oxygen species generation, this study's objective was to determine the role of these enzymes in ZnD-induced oxidative stress. We hypothesized that ZnD promotes NADPH oxidase upregulation, resulting in oxidative stress and kidney damage. To test this hypothesis, wild-type mice were pair-fed a ZnD or Zn2+-adequate diet. To further investigate the effects of Zn2+ bioavailability on NADPH oxidase regulation, mouse tubular epithelial cells were exposed to the Zn2+ chelator N,N,N′,N′-tetrakis(2-pyridylmethyl)ethylenediamine (TPEN) or vehicle followed by Zn2+ supplementation. We found that ZnD diet-fed mice develop microalbuminuria, electrolyte imbalance, and whole kidney hypertrophy. These markers of kidney damage are accompanied by elevated Nox2 expression and H2O2 levels. In mouse tubular epithelial cells, TPEN-induced ZnD stimulates H2O2 generation. In this in vitro model of ZnD, enhanced H2O2 generation is prevented by NADPH oxidase inhibition with diphenyleneiodonium. Specifically, TPEN promotes Nox2 expression and activation, which are reversed when intracellular Zn2+ levels are restored following Zn2+ supplementation. Finally, Nox2 knockdown by siRNA prevents TPEN-induced H2O2 generation and cellular hypertrophy in vitro. Together, these findings reveal that Nox2 is a Zn2+-regulated enzyme that mediates ZnD-induced oxidative stress and kidney hypertrophy. Understanding the specific mechanisms by which ZnD contributes to kidney damage may have an important impact on the treatment of chronic kidney disease.


Sign in / Sign up

Export Citation Format

Share Document