Differential Effects of Low-Dose and High-Dose Beta-Carotene Supplementation on the Signs of Photoaging and Type I Procollagen Gene Expression in Human Skin in vivo

Dermatology ◽  
2010 ◽  
Vol 221 (2) ◽  
pp. 160-171 ◽  
Author(s):  
Soyun Cho ◽  
Dong Hun Lee ◽  
Chong-Hyun Won ◽  
Sang Min Kim ◽  
Serah Lee ◽  
...  
1995 ◽  
Vol 14 (3) ◽  
pp. 260-265 ◽  
Author(s):  
D. Dick ◽  
Kme Ng ◽  
DN Sauder ◽  
I. Chu

Chloroform has been found in potable water and there is concern that significant dermal absorption may arise from daily bathing and other activities. The present study examines percutaneous absorption of 14C-chloroform in vivo using human volunteers and in vitro using fresh, excised human skin in a flow-through diffusion cell sys tem. Fifty microlitre doses of either 1000 μg ml-1 chloro form in distilled water, (16.1 μg cm-2) or 5000 μg ml-1 of chloroform in ethanol, (80.6 μg cm-1) were applied to the forearm of volunteers with exhaled air and urine being collected for analysis. Single doses of either 0.4 μg ml-1 chloroform in distilled water (low dose, 0.62 μg cm-2, 1.0 ml dosed) or 900 μg ml-1 chloroform in distilled water (high dose, 70.3 μg cm -2, 50 μl dosed) were applied to discs of the excised abdominal skin placed in flow-through dif fusion cells and perfused with Hepes buffered Hank's bal anced salt solution, with a wash at 4 h. In vivo absorption was 7.8 ± 1.4% (water as vehicle) and 1.6 ± 0.3% (ethanol as vehicle). Of the dose absorbed in vivo, more than 95% was excreted via the lungs (over 88% of which was CO2), and the maximum pulmonary excretion occurred between 15 min and 2 h after dosing. The percentage of dose absorbed in vitro (skin + perfusate) was 5.6 ± 2.7% (low dose) and 7.1 ± 1.4% (high dose). The above data demon strate that a significant amount of the dissolved chloro form penetrates through the human skin, and that a higher percentage of the applied dose was absorbed using water as vehicle. In addition, the in vitro method offers a good estimate for in vivo data.


2008 ◽  
Vol 49 (6) ◽  
pp. 1235-1245 ◽  
Author(s):  
Soyun Cho ◽  
Hyeon Ho Kim ◽  
Min Jung Lee ◽  
Serah Lee ◽  
Chang-Seo Park ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Naomi S. Sta Maria ◽  
Leslie A. Khawli ◽  
Vyshnavi Pachipulusu ◽  
Sharon W. Lin ◽  
Long Zheng ◽  
...  

AbstractQuantitative in vivo monitoring of cell biodistribution offers assessment of treatment efficacy in real-time and can provide guidance for further optimization of chimeric antigen receptor (CAR) modified cell therapy. We evaluated the utility of a non-invasive, serial 89Zr-oxine PET imaging to assess optimal dosing for huLym-1-A-BB3z-CAR T-cell directed to Lym-1-positive Raji lymphoma xenograft in NOD Scid-IL2Rgammanull (NSG) mice. In vitro experiments showed no detrimental effects in cell health and function following 89Zr-oxine labeling. In vivo experiments employed simultaneous PET/MRI of Raji-bearing NSG mice on day 0 (3 h), 1, 2, and 5 after intravenous administration of low (1.87 ± 0.04 × 106 cells), middle (7.14 ± 0.45 × 106 cells), or high (16.83 ± 0.41 × 106 cells) cell dose. Biodistribution (%ID/g) in regions of interests defined over T1-weighted MRI, such as blood, bone, brain, liver, lungs, spleen, and tumor, were analyzed from PET images. Escalating doses of CAR T-cells resulted in dose-dependent %ID/g biodistributions in all regions. Middle and High dose groups showed significantly higher tumor %ID/g compared to Low dose group on day 2. Tumor-to-blood ratios showed the enhanced extravascular tumor uptake by day 2 in the Low dose group, while the Middle dose showed significant tumor accumulation starting on day 1 up to day 5. From these data obtained over time, it is apparent that intravenously administered CAR T-cells become trapped in the lung for 3–5 h and then migrate to the liver and spleen for up to 2–3 days. This surprising biodistribution data may be responsible for the inactivation of these cells before targeting solid tumors. Ex vivo biodistributions confirmed in vivo PET-derived biodistributions. According to these studies, we conclude that in vivo serial PET imaging with 89Zr-oxine labeled CAR T-cells provides real-time monitoring of biodistributions crucial for interpreting efficacy and guiding treatment in patient care.


1985 ◽  
Vol 249 (1) ◽  
pp. G137-G144 ◽  
Author(s):  
T. A. Miller ◽  
D. Li ◽  
Y. J. Kuo ◽  
K. L. Schmidt ◽  
L. L. Shanbour

By use of an in vivo canine chambered stomach preparation in which the gastric mucosa was partitioned into two equal halves, the effect of topical 16,16-dimethyl PGE2 (DMPGE2) (1 microgram/ml of perfusate) and 8% and 40% ethanol on tissue levels of nonprotein sulfhydryl compounds was assessed. Both DMPGE2 and 8% ethanol significantly increased (P less than 0.005) mucosal levels of nonprotein sulfhydryls when compared with corresponding mucosa bathed with saline alone. In contrast, mucosa bathed with 40% ethanol showed significantly decreased levels. If mucosa was bathed with DMPGE2 or 8% ethanol prior to exposing the stomach to 40% ethanol, this depletion in sulfhydryl compounds was not observed. Since other experimental observations have shown that exogenously administered prostaglandins and mild irritants (such as low-dose alcohol) can prevent gastric mucosal damage by necrotizing agents (such as high-dose alcohol), our findings are consistent with the hypothesis that nonprotein sulfhydryls may play a role in mediating gastric mucosal protection.


1984 ◽  
Vol 4 (9) ◽  
pp. 1843-1852
Author(s):  
R J Focht ◽  
S L Adams

We analyzed the control of type I collagen synthesis in four kinds of differentiated cells from chicken embryos which synthesize very different amounts of the protein. Tendon, skin, and smooth muscle cells were found to have identical amounts of type I collagen RNAs; however, the RNAs had inherently different translatabilities, which were observed both in vivo and in vitro. Chondrocytes also had substantial amounts of type I collagen RNAs, even though they directed no detectable synthesis of the protein either in vivo or in vitro. Type I collagen RNAs in chondrocytes display altered electrophoretic mobilities, suggesting that in these cells the reduction in translational efficiency may be mediated in part by changes in the RNA structure. These data indicate that control of type I collagen gene expression is a complex process which is exerted at both transcriptional and post-transcriptional levels.


2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A766-A766
Author(s):  
Isabelle Le Mercier ◽  
Sunny Sun ◽  
Dongmei Xiao ◽  
Laura Isacco ◽  
Daniel Treacy ◽  
...  

BackgroundT cell responses are tightly regulated and require a constant balance of signals during the different stages of their activation, expansion, and differentiation. As a result of chronic antigen exposure, T cells become exhausted in solid tumors, preventing them from controlling tumor growth.MethodsWe identified a transcriptional signature associated with T cell exhaustion in patients with melanoma and used our proprietary machine learning algorithms to predict molecules that would prevent T cell exhaustion and improve T cell function. Among the predictions, an orally available small molecule, Compound A, was highly predicted.ResultsCompound A was tested in an in vitro T cell Exhaustion assay and shown to prevent loss of proliferation and expression of immune checkpoint receptors. Transcriptionally, Compound A-treated cells looked indistinguishable from conventionally expanded, non-exhausted T cells. However, when assessed in a classical T cell activation assay, Compound A demonstrated dose dependent activity. At low dose, Compound A was immuno-stimulatory, allowing cells to divide further by preventing activation induced cell death. At higher doses, Compound A demonstrated immuno-suppressive activity preventing early CD69 upregulation and T cell proliferation. All together, these observations suggest that Compound A prevented exhaustion with a mechanism of action involving TCR signaling inhibition. While cessation of TCR signaling or rest has been recently associated with improved CAR-T efficacy by preventing or reversing exhaustion during the in vitro manufacturing phase, it is unclear if that mechanism would translate in vivo.Compound A was evaluated in the CT26 and MC38 syngeneic mouse models alongside anti-PD1. At low dose Compound A closely recapitulated anti-PD1 mediated cell behavior changes by scRNA-seq and flow cytometry in CT26 mice. At high dose, Compound A led to the accumulation of naive cells in the tumor microenvironment (TME) confirming the proposed mechanism of action. Low dose treatment was ineffective in MC38 mouse model but a pulsed treatment at high dose also recapitulated anti-PD1 activity in most animals. Importantly, we identified a new T cell population responding to anti-PD1 that was particularly increased in the MC38 mouse model; Compound A treatment also impacted this population.ConclusionsThese data confirm that mild TCR inhibition either suboptimal or fractionated can prevent exhaustion in vivo. However, this approach has a very limited window of activity between immuno-modulatory and immuno-suppressive effects, thereby limiting potential clinical benefit. Finally, these results demonstrate that our approach and platform was able to predict molecules that would prevent T cell exhaustion in vivo.


Sign in / Sign up

Export Citation Format

Share Document