scholarly journals Generation of Natural Killer Cell Memory during Viral Infection

2015 ◽  
Vol 7 (6) ◽  
pp. 557-562 ◽  
Author(s):  
Timothy E. O'Sullivan ◽  
Joseph C. Sun

Immunological memory is classically regarded as an attribute of antigen-specific T and B lymphocytes of the adaptive immune system. Cells of the innate immune system, including natural killer (NK) cells, have been considered short-lived cytolytic cells that can rapidly respond against pathogens in an antigen-independent manner and then die off. However, NK cells have recently been described to possess traits of adaptive immunity, such as clonal expansion after viral antigen exposure to generate long-lived memory cells. In this review, we will discuss the current evidence for viral-induced NK cell memory in both mice and humans.


Oncogene ◽  
2020 ◽  
Author(s):  
Feixue Wang ◽  
Jennie Ka Ching Lau ◽  
Jun Yu

AbstractGastrointestinal cancer is one of the leading health problems worldwide, with a high morbidity and mortality. To date, harnessing both the innate and adaptive immune system against cancer provides a selective and effective therapeutic strategy for patients. As a first line defense against cancer, natural killer (NK) cells can swiftly target and lyse tumor cells without prior activation. In addition to its pivotal role in innate immunity, NK cells also play unique roles in the adaptive immune system as it enhance anti-tumor adaptive immune responses through secretion of cytokines and retaining an immunological memory. All these characteristics make NK cell a promising anti-cancer agent for patients. In spite of scarce infiltration and impaired function of NK cells in tumors, and the fact that tumors easily develop resistant mechanisms to evade the attacks from endogenous NK cells, multiple strategies have been developed to boost anti-tumor effect of NK cells and abolish tumor resistance. Some examples include adoptive transfer of NK cells after ex vivo activation and expansion; restoration of NK cell function using immune checkpoint inhibitors, and monoclonal antibody or cytokine treatment. Preclinical data have shown encouraging results, suggesting that NK cells hold great potential in cancer therapy. In this review, we discuss NK cells’ cytotoxicity and modulation function in GI cancer and the current application in clinical therapy.



Endocrines ◽  
2021 ◽  
Vol 2 (2) ◽  
pp. 121-132
Author(s):  
Erik D. Hanson ◽  
Lauren C. Bates ◽  
Kaileigh Moertl ◽  
Elizabeth S. Evans

Natural killer (NK) cells from the innate immune system are integral to overall immunity and also in managing the tumor burden during cancer. Breast (BCa) and prostate cancer (PCa) are the most common tumors in U.S. adults. Both BCa and PCa are frequently treated with hormone suppression therapies that are associated with numerous adverse effects including direct effects on the immune system. Regular exercise is recommended for cancer survivors to reduce side effects and improve quality of life. Acute exercise is a potent stimulus for NK cells in healthy individuals with current evidence indicating that NK mobilization in individuals with BCa and PCa is comparable. NK cell mobilization results from elevations in shear stress and catecholamine levels. Despite a normal NK cell response to exercise, increases in epinephrine are attenuated in BCa and PCa. The significance of this potential discrepancy still needs to be determined. However, alterations in adrenal hormone signaling are hypothesized to be due to chronic stress during cancer treatment. Additional compensatory factors induced by exercise are reviewed along with recommendations on standardized approaches to be used in exercise immunology studies involving oncology populations.



Blood ◽  
2008 ◽  
Vol 111 (3) ◽  
pp. 1437-1447 ◽  
Author(s):  
Ilan Vaknin ◽  
Liora Blinder ◽  
Lynn Wang ◽  
Roi Gazit ◽  
Elena Shapira ◽  
...  

Abstract T- and natural killer (NK)–cell immunosuppression associated with ζ-chain down-regulation has been described in cancer, autoimmune, and infectious diseases. However, the precise stimuli leading to this bystander phenomenon in such different pathogen-dependent and sterile pathologies remained unresolved. Here, we demonstrate that Toll-like receptors (TLRs) play a major role in the induction of innate and adaptive immune system suppression; repetitive administration of single TLR 2, 3, 4, or 9 agonists, which do not exhibit any virulent or immune invasive properties, was sufficient to induce a bystander NK- and T-cell immunosuppression associated with ζ-chain down-regulation mediated by myeloid suppressor cells, as observed in the course of active pathologies. We identified a 35-amino acid (aa) region within the ζ-chain as being responsible for its degradation under TLR-mediated chronic inflammation. Furthermore, we provide evidence that ζ-chain levels could serve as a biomarker for chronic inflammation-dependent immunosuppression. Thus, although acute TLR-mediated activation could be beneficial in clearing pathogens or may serve as an immune adjuvant, such activation could be detrimental under sustained conditions.



2021 ◽  
Vol 12 ◽  
Author(s):  
Kari A. Shaver ◽  
Tayler J. Croom-Perez ◽  
Alicja J. Copik

Cancer immunotherapy is a highly successful and rapidly evolving treatment modality that works by augmenting the body’s own immune system. While various immune stimulation strategies such as PD-1/PD-L1 or CTLA-4 checkpoint blockade result in robust responses, even in patients with advanced cancers, the overall response rate is low. While immune checkpoint inhibitors are known to enhance cytotoxic T cells’ antitumor response, current evidence suggests that immune responses independent of cytotoxic T cells, such as Natural Killer (NK) cells, play crucial role in the efficacy of immunotherapeutic interventions. NK cells hold a distinct role in potentiating the innate immune response and activating the adaptive immune system. This review highlights the importance of the early actions of the NK cell response and the pivotal role NK cells hold in priming the immune system and setting the stage for successful response to cancer immunotherapy. Yet, in many patients the NK cell compartment is compromised thus lowering the chances of successful outcomes of many immunotherapies. An overview of mechanisms that can drive NK cell dysfunction and hinder immunotherapy success is provided. Rather than relying on the likely dysfunctional endogenous NK cells to work with immunotherapies, adoptive allogeneic NK cell therapies provide a viable solution to increase response to immunotherapies. This review highlights the advances made in development of NK cell therapeutics for clinical application with evidence supporting their combinatorial application with other immune-oncology approaches to improve outcomes of immunotherapies.



Blood ◽  
1999 ◽  
Vol 94 (12) ◽  
pp. 4210-4219 ◽  
Author(s):  
Jean Gosselin ◽  
Andru TomoÏu ◽  
Robert C. Gallo ◽  
Louis Flamand

Natural killer (NK) cells are large granular lymphocytes capable of efficient killing of virus-infected and tumor cells in a major histocompatibility complex-independent manner. The cytotoxic killing potential of NK cells can be modulated by a variety of factors, including cytokines such as interleukin-12 (IL-12), IL-15, and interferon (IFN). IL-15 also plays an important role in NK cell development and survival. Killing of virally infected cells by NK cells is likely to represent an important antiviral defense mechanism, especially during the early phase of infection when antigen-specific immunity has yet to be generated. In the present work, we studied the potential of IL-15 to act as a modulator of NK cell-mediated antiviral defense. Our results clearly indicate that IL-15 can curtail infections by 3 human herpesviruses: Herpes simplex virus type 1, Epstein-Barr virus, and human herpesvirus 6. The antiviral activity of IL-15 is dose-, time-, and NK cell-dependent. IL-15–treated NK cells showed an increased killing potential against a variety of cells, including virus-infected target cells. Lastly, using highly purified cell population, we report that IL-15 triggers the synthesis of IFN-γ from both CD4+ and NK cells, which can act in both autocrine and paracrine fashion to modulate NK cells cytotoxic potential. In conclusion, IL-15 is a cytokine that can contribute to the establishment of an antiviral state in 2 ways: first by increasing the killing ability of NK cells and second by stimulating the synthesis and secretion of IFN.



2020 ◽  
Vol 38 (1) ◽  
pp. 511-539
Author(s):  
Mathieu Mancini ◽  
Silvia M. Vidal

The continuous interactions between host and pathogens during their coevolution have shaped both the immune system and the countermeasures used by pathogens. Natural killer (NK) cells are innate lymphocytes that are considered central players in the antiviral response. Not only do they express a variety of inhibitory and activating receptors to discriminate and eliminate target cells but they can also produce immunoregulatory cytokines to alert the immune system. Reciprocally, several unrelated viruses including cytomegalovirus, human immunodeficiency virus, influenza virus, and dengue virus have evolved a multitude of mechanisms to evade NK cell function, such as the targeting of pathways for NK cell receptors and their ligands, apoptosis, and cytokine-mediated signaling. The studies discussed in this article provide further insights into the antiviral function of NK cells and the pathways involved, their constituent proteins, and ways in which they could be manipulated for host benefit.



Blood ◽  
1999 ◽  
Vol 94 (12) ◽  
pp. 4210-4219 ◽  
Author(s):  
Jean Gosselin ◽  
Andru TomoÏu ◽  
Robert C. Gallo ◽  
Louis Flamand

Abstract Natural killer (NK) cells are large granular lymphocytes capable of efficient killing of virus-infected and tumor cells in a major histocompatibility complex-independent manner. The cytotoxic killing potential of NK cells can be modulated by a variety of factors, including cytokines such as interleukin-12 (IL-12), IL-15, and interferon (IFN). IL-15 also plays an important role in NK cell development and survival. Killing of virally infected cells by NK cells is likely to represent an important antiviral defense mechanism, especially during the early phase of infection when antigen-specific immunity has yet to be generated. In the present work, we studied the potential of IL-15 to act as a modulator of NK cell-mediated antiviral defense. Our results clearly indicate that IL-15 can curtail infections by 3 human herpesviruses: Herpes simplex virus type 1, Epstein-Barr virus, and human herpesvirus 6. The antiviral activity of IL-15 is dose-, time-, and NK cell-dependent. IL-15–treated NK cells showed an increased killing potential against a variety of cells, including virus-infected target cells. Lastly, using highly purified cell population, we report that IL-15 triggers the synthesis of IFN-γ from both CD4+ and NK cells, which can act in both autocrine and paracrine fashion to modulate NK cells cytotoxic potential. In conclusion, IL-15 is a cytokine that can contribute to the establishment of an antiviral state in 2 ways: first by increasing the killing ability of NK cells and second by stimulating the synthesis and secretion of IFN.



2018 ◽  
Vol 115 (45) ◽  
pp. 11579-11584 ◽  
Author(s):  
Andrew Wight ◽  
Ahmad Bakur Mahmoud ◽  
Michal Scur ◽  
Megan M. Tu ◽  
Mir Munir A. Rahim ◽  
...  

Adaptive natural killer (NK) cell memory represents a new frontier in immunology. Work over the last decade has discovered and confirmed the existence of NK cells with antigen-specific memories, which had previously been considered a unique property of T and B cells. These findings have shown that antigen-specific NK cells gain their specificity without the use of RAG proteins, representing a novel mechanism for generating antigen specificity, but the details of this mechanism have remained a mystery. We have discovered that members of the Ly49 family of surface receptors are critically involved in both the sensitization and the challenge phases of an NK cell memory response, as is antigen presentation from their binding partner, the class I MHC. Moreover, we demonstrate that the Ly49-interacting component of a presented antigen dictates the specificity of the NK cell memory response, implicating Ly49 receptors themselves in antigen-specific recognition. Finally, we demonstrate that adaptive NK cell memories can protect against an otherwise lethal melanoma without T cell or B cell support. These findings offer insight into the mechanism behind NK cell antigen specificity and demonstrate the clinical potential of this adaptive immune cell.



Author(s):  
Dominic Lenz ◽  
Jens Pahl ◽  
Fabian Hauck ◽  
Seham Alameer ◽  
Meena Balasubramanian ◽  
...  

Abstract Purpose Biallelic pathogenic NBAS variants manifest as a multisystem disorder with heterogeneous clinical phenotypes such as recurrent acute liver failure, growth retardation, and susceptibility to infections. This study explores how NBAS-associated disease affects cells of the innate and adaptive immune system. Methods Clinical and laboratory parameters were combined with functional multi-parametric immunophenotyping methods in fifteen NBAS-deficient patients to discover possible alterations in their immune system. Results Our study revealed reduced absolute numbers of mature CD56dim natural killer (NK) cells. Notably, the residual NK cell population in NBAS-deficient patients exerted a lower potential for activation and degranulation in response to K562 target cells, suggesting an NK cell–intrinsic role for NBAS in the release of cytotoxic granules. NBAS-deficient NK cell activation and degranulation was normalized upon pre-activation by IL-2 in vitro, suggesting that functional impairment was reversible. In addition, we observed a reduced number of naïve B cells in the peripheral blood associated with hypogammaglobulinemia. Conclusion In summary, we demonstrate that pathogenic biallelic variants in NBAS are associated with dysfunctional NK cells as well as impaired adaptive humoral immunity.



2009 ◽  
Vol 206 (7) ◽  
pp. 1495-1503 ◽  
Author(s):  
Cameron S. Brandt ◽  
Myriam Baratin ◽  
Eugene C. Yi ◽  
Jacob Kennedy ◽  
Zeren Gao ◽  
...  

Cancer development is often associated with the lack of specific and efficient recognition of tumor cells by the immune system. Natural killer (NK) cells are lymphocytes of the innate immune system that participate in the elimination of tumors. We report the identification of a tumor cell surface molecule that binds NKp30, a human receptor which triggers antitumor NK cell cytotoxicity and cytokine secretion. This previously unannotated gene belongs to the B7 family and, hence, was designated B7-H6. B7-H6 triggers NKp30-mediated activation of human NK cells. B7-H6 was not detected in normal human tissues but was expressed on human tumor cells, emphasizing that the expression of stress-induced self-molecules associated with cell transformation serves as a mode of cell recognition in innate immunity.



Sign in / Sign up

Export Citation Format

Share Document