Characterization of the Anticoagulant and Antithrombotic Properties of the Sphingosine 1-Phosphate Mimetic FTY720

2016 ◽  
Vol 137 (1) ◽  
pp. 1-6 ◽  
Author(s):  
Zhen Zhao ◽  
Ruixue Wang ◽  
Zhijun Huo ◽  
Chunlei Li ◽  
Zhiyong Wang

Sphingosine 1-phosphate (S1P) is a highly active lysophospholipid implicated in various cardiocerebrovascular events such as coagulation, myocardial infarction and stroke. However, as the functional S1P receptor antagonist, whether the S1P mimetic FTY720 can modulate coagulation and/or thrombotic formation remains largely unknown. We investigated the effects of FTY720 on adenosine diphosphate (ADP)-induced platelet aggregation, coagulation parameters and thrombus formation in rats. Pretreatment with FTY720 (2.5 mg/kg) inhibited platelet aggregation induced by ADP, elongated the thrombin time and decreased the fibrinogen levels. However, FTY720 produced no significant effects on the arteriovenous bypass thrombus formation or the FeCl3-induced thrombus formation in the inferior vena cava and the common carotid artery. Our data suggest that FTY720 can exert an inhibitory effect on platelet aggregation and coagulation-related parameters. These characteristics of FTY720 could be useful as an adjunct in the treatment of ischemic diseases such as ischemic stroke and myocardial infarction.

1979 ◽  
Author(s):  
J. Lansen ◽  
G. Biagi ◽  
P. Niebes ◽  
J. Gordon ◽  
R. Roncucci

Recent findings have suggested that the in vivo balance between the biosynthesis of proaggregating substances by blood platelets (e.g. thromboxane A2, endoperoxides) and antiaggregating substances produced by the vessel wall (PGI2) might be critical for thrombus formation. We therefore investigated the effect of suloctidil (S), indomethacin (I), acetylsalicylic acid (ASA) and tranylcypromine (T) on these parameters. Male Sprague-Dawley rats (200-300 g) fasted for 12 h were given a single i.v. dose (0.5 and 1 mg/kg) of S (glucuronate salt) or 200 mg/kg of the other compounds. Ten min after the injection, rats were killed and segments of the abdominal aorta and inferior vena cava were excised. PGI2 production by these segments vascular tissue was assessed by platelet aggregation inhibitory activity. PGI2 production was almost completely inhibited by ASA, I and T whereas S enhanced the production (or possibly the effect) of PGI2-like activity. The effect of S was dose dependent and was statistically significant at 1 mg/kg. In vitro studies showed that 100 μM S potentiated the inhibitory effect of synthetic PGI2 on platelet aggregation.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Mayara Ribeiro de Queiroz ◽  
Carla Cristine N. Mamede ◽  
Nadia Cristina G. de Morais ◽  
Kelly Cortes Fonseca ◽  
Bruna Barbosa de Sousa ◽  
...  

In this paper, we describe the purification/characterization of BmooAi, a new toxin fromBothrops moojenithat inhibits platelet aggregation. The purification of BmooAi was carried out through three chromatographic steps (ion-exchange on a DEAE-Sephacel column, molecular exclusion on a Sephadex G-75 column, and reverse-phase HPLC chromatography on a C2/C18 column). BmooAi was homogeneous by SDS-PAGE and shown to be a single-chain protein of 15,000 Da. BmooAi was analysed by MALDI-TOF Spectrometry and revealed two major components with molecular masses 7824.4 and 7409.2 as well as a trace of protein with a molecular mass of 15,237.4 Da. Sequencing of BmooAi by Edman degradation showed two amino acid sequences: IRDFDPLTNAPENTA and ETEEGAEEGTQ, which revealed no homology to any known toxin from snake venom. BmooAi showed a rather specific inhibitory effect on platelet aggregation induced by collagen, adenosine diphosphate, or epinephrine in human platelet-rich plasma in a dose-dependent manner, whereas it had little or no effect on platelet aggregation induced by ristocetin. The effect on platelet aggregation induced by BmooAi remained active even when heated to 100°C. BmooAi could be of medical interest as a new tool for the development of novel therapeutic agents for the prevention and treatment of thrombotic disorders.


1974 ◽  
Vol 32 (02/03) ◽  
pp. 417-431 ◽  
Author(s):  
A. du P Heyns ◽  
D. J van den Berg ◽  
G. M Potgieter ◽  
F. P Retief

SummaryThe platelet aggregating activity of extracts of different layers of the arterial wall was compared to that of Achilles tendon. Arterial media and tendon extracts, adjusted to equivalent protein content as an index of concentration, aggregated platelets to the same extent but an arterial intima extract did not aggregate platelets. Platelet aggregation induced by collagen could be inhibited by mixing with intima extract, but only to a maximum of about 80%. Pre-mixing adenosine diphosphate (ADP) with intima extracts diminished the platelet aggregation activity of the ADP. Depending on the relationship between ADP and intima extract concentrations aggregating activity could either be completely inhibited or inhibition abolished. Incubation of ADP with intima extract and subsequent separation of degradation products by paper chromatography, demonstrated a time-dependent breakdown of ADP with AMP, adenosine, inosine and hypoxanthine as metabolic products; ADP removal was complete. Collagen, thrombin and adrenaline aggregate platelets mainly by endogenous ADP of the release reaction. Results of experiments comparing inhibition of aggregation caused by premixing aggregating agent with intima extract, before exposure to platelets, and the sequential addition of first the intima extract and then aggregating agent to platelets, suggest that the inhibitory effect of intima extract results from ADP breakdown. It is suggested that this ADP degradation by intima extract may play a protective role in vivo by limiting the size of platelet aggregates forming at the site of minimal “wear and tear” vascular trauma.


1982 ◽  
Vol 47 (02) ◽  
pp. 150-153 ◽  
Author(s):  
P Han ◽  
C Boatwright ◽  
N G Ardlie

SummaryVarious cardiovascular drugs such as nitrates and propranolol, used in the treatment of coronary artery disease have been shown to have an antiplatelet effect. We have studied the in vitro effects of two antiarrhythmic drugs, verapamil and disopyramide, and have shown their inhibitory effect on platelet function. Verapamil, a calcium channel blocker, inhibited the second phase of platelet aggregation induced by adenosine diphosphate (ADP) and inhibited aggregation induced by collagen. Disopyramide similarly inhibited the second phase of platelet aggregation caused by ADP and aggregation induced by collagen. Either drug in synergism with propranolol inhibited ADP or collagen-induced platelet aggregation. Disopyramide at high concentrations inhibited arachidonic add whereas verapamil was without effect. Verapamil, but not disopyramide, inhibited aggregation induced by the ionophore A23187.


1982 ◽  
Vol 48 (01) ◽  
pp. 078-083 ◽  
Author(s):  
C Ts'ao ◽  
S J Hart ◽  
D V Krajewski ◽  
P G Sorensen

SummaryEarlier, we found that ε-aminocaproic acid (EACA) inhibited human platelet aggregation induced by adenosine diphosphate (ADP) and collagen, but not aggregation by arachidonic acid (AA). Since EACA is structurally similar to lysine, yet these two agents exhibit vast difference in their antifibrinolytic activities, we chose to study the effect of lysine on platelet aggregation. We used L-lysine-HCl in these studies because of its high solubility in aqueous solutions while causing no change in pH when added to human plasma. With lysine, we repeatedly found inhibition of ADP-, collagen- and ristocetin-induced aggregation, but potentiation of AA-induced aggregation. Both the inhibitory and potentiation effects were dose-dependent. Low doses of lysine inhibited the secondary phase of aggregation; high doses of it also inhibited the primary phase of aggregation. Potentiation of AA-induced aggregation was accompanied by increased release of serotonin and formation of malondialdehyde. These effects were not confined to human platelets; rat platelets were similarly affected. Platelets, exposed to lysine and then washed and resuspended in an artificial medium not containing lysine, remained hypersensitive to AA, but no longer showed decreased aggregation by collagen. Comparing the effects of lysine with equimolar concentrations of sucrose, EACA, and α-amino-n-butyric acid, we attribute the potent inhibitory effect of lysine to either the excess positive charge or H+ and C1− ions. The -NH2 group on the α-carbon on lysine appears to be the determining factor for the potentiation effect; the effect seems to be exerted on the cyclooxygenase level of AA metabolism. Lysine and other chemicals with platelet-affecting properties similar to lysine may be used as a tool for the study of the many aspects of a platelet aggregation reaction.


2006 ◽  
Vol 96 (08) ◽  
pp. 167-175 ◽  
Author(s):  
Yutaka Matsumoto ◽  
Hisao Takizawa ◽  
Kazuhiro Nakama ◽  
Xiaoqi Gong ◽  
Yoshihisa Yamada ◽  
...  

SummaryRecent progress in the understanding of thrombus formation has suggested an important role of glycoprotein (GP)VI. In contrast to its pivotal role in collagen-induced platelet activation, it has been suggested that its blockade does not induce massive bleeding tendency. To demonstrate the dissociation between inhibitory effect on platelet aggregation and bleeding by GPVI blockade, we examined the effects of Fab fragment of OM2, an anti-human GPVI monoclonal antibody on ex vivo collagen-induced platelet aggregation and skin bleeding time after intravenous injection in cynomolgus monkeys. In a dose-escalation study, OM2 potently (>80%) inhibited collagen-induced platelet aggregation at the cumulative dose of 0. 2 mg/kg with a slight prolongation of bleeding time (1. 3 times baseline value). Furthermore, at 18. 8 mg/kg, the highest dose tested, prolongation of bleeding time was still mild (1. 9 times). In contrast, abciximab, Fab fragment of anti-GPIIb/IIIa antibody prolonged bleeding time by 5. 0 times at 0. 35 mg/kg, the lowest effective dose on platelet aggregation. Ina pharmacodynamic study,a bolus injection of OM2 at 0. 4 mg/kg produced potent inhibition of collagen-induced aggregation up to six hours after injection, showing longer half-life than that of abciximab. The injection of OM2 Fab did not induce thrombocytopenia and GPVI depletion in monkeys. These results suggest that blockade of GPVI by antibody can exerta potent inhibitory effect on collagen-induced platelet aggregation with a milder prolongation of bleeding time than blockade of GPIIb/IIIa. This study indicates that OM2 has the potential to be developed as a new class of therapeutic tool.


1991 ◽  
Vol 66 (06) ◽  
pp. 694-699 ◽  
Author(s):  
Marco Cattaneo ◽  
Benjaporn Akkawat ◽  
Anna Lecchi ◽  
Claudio Cimminiello ◽  
Anna M Capitanio ◽  
...  

SummaryPlatelet aggregation and fibrinogen binding were studied in 15 individuals before and 7 days after the oral administration of ticlopidine (250 mg b.i.d.). Ticlopidine significantly inhibited platelet aggregation induced by adenosine diphosphate (ADP), the endoperoxide analogue U46619, collagen or low concentrations of thrombin, but did not inhibit platelet aggregation induced by epinephrine or high concentrations of thrombin. Ticlopidine inhibited 125I-fibrinogen binding induced by ADP, U46619 or thrombin (1 U/ml). The ADP scavengers apyrase or CP/CPK, added in vitro to platelet suspensions obtained before ticlopidine, caused the same pattern of aggregation and 125I-fibrihogen binding inhibition as did ticlopidine. Ticlopidine did not inhibit further platelet aggregation and 125I-fibrinogen binding induced in the presence of ADP scavengers. After ticlopidine administration, thrombin or U46619, but not ADP, increased the binding rate of the anti-GPIIb/IIIa monoclonal antibody 7E3 to platelets. Ticlopidine inhibited clot retraction induced by reptilase plus ADP, but not that induced by thrombin or by reptilase plus epinephrine, and prevented the inhibitory effect of ADP, but not that of epinephrine, on the PGE1-induced increase in platelet cyclic AMP. The number of high- and low-affinity binding sites for 3H-ADP on formalin-fixed platelets and their K d were not modified by ticlopidine. These findings indicate that ticlopidine selectively inhibits platelet responses to ADP.


2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Bruna Barbosa de Sousa ◽  
Carla Cristine Neves Mamede ◽  
Mariana Santos Matias ◽  
Déborah Fernanda da Cunha Pereira ◽  
Mayara Ribeiro de Queiroz ◽  
...  

This work reports the purification and functional characterization of BmooPAi, a platelet-aggregation-inhibiting factor fromBothrops moojenisnake venom. The toxin was purified by a combination of three chromatographic steps (ion-exchange on DEAE-Sephacel, molecular exclusion on Sephadex G-75, and affinity chromatography on HiTrap™ Heparin HP). BmooPAi was found to be a single-chain protein with an apparent molecular mass of 32 kDa on 14% SDS-PAGE, under reducing conditions. Sequencing of BmooPAi by Edman degradation revealed the amino acid sequence LGPDIVPPNELLEVM. The toxin was devoid of proteolytic, haemorrhagic, defibrinating, or coagulant activities and induced no significant oedema or hyperalgesia. BmooPAi showed a rather specific inhibitory effect on ristocetin-induced platelet aggregation in human platelet-rich plasma, whereas it had little or no effect on platelet aggregation induced by collagen and adenosine diphosphate. The results presented in this work suggest that BmooPAi is a toxin comprised of disintegrin-like and cysteine-rich domains, originating from autolysis/proteolysis of PIII SVMPs fromB. moojenisnake venom. This toxin may be of medical interest because it is a platelet aggregation inhibitor, which could potentially be developed as a novel therapeutic agent to prevent and/or treat patients with thrombotic disorders.


Author(s):  
David Erlinge ◽  
Göran Olivecrona

ST-elevation myocardial infarction (STEMI) is generally caused by a ruptured plaque that triggers local thrombus formation, which occludes the coronary artery. STEMI should be diagnosed rapidly, based on the combination of ST-segment elevation and symptoms of acute myocardial infarction. The main treatment objective is myocardial tissue reperfusion as quickly as possible. The preferred method of reperfusion is primary percutaneous coronary interventionif transport time is below 2 hours, and thrombolysis if longer STEMI patients with acute onset cardiogenic shock should be evaluated by echocardiography to exclude mechanical complications, such as flail mitral insufficiency, ventricular septal defect or tamponade. Secondary prevention includes aspirin, adenosine diphosphate receptor antagonists, statins, beta-blockers, angiotensin-converting enzymeinhibitors, and lifestyle changes.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 3361-3361
Author(s):  
Riitta Lassila ◽  
Annukka Jouppila ◽  
Ulla M Marzec ◽  
Stephen R Hanson

Abstract Abstract 3361 We have developed a semi-synthetic antithrombotic heparin complex, APL001, to mimic mast cell-derived natural heparin proteoglycans (HepPG). HepPG attenuate platelet-collagen interactions under blood flow by inhibiting VWF- and GPIIb/IIIa -mediated platelet aggregation. In addition, rat-derived HepPG arrest platelet thrombus growth on collagen surfaces or at vascular injury sites, both in vitro and in vivo (Lassila et al.ATVB 1997, Kauhanen et al. ATVB 2000, Olsson et al. Thromb Haemost 2002). Our objective was to study the inhibitory capacity of APL001 for preventing human platelet aggregation in vitro and acute thrombosis in a baboon model in vivo. The effects of unfractionated heparin (UFH) and APL001 were compared in relevant coagulation assays (APTT, PT, thrombin time, anti-FXa activity, fibrinogen, FVIII:C and VWF activity (VWF:RCo) and antigen). Additionally, agonist-induced (collagen, ristocetin and ADP) platelet aggregation in citrate or hirudin-anticoagulated whole blood (Multiplate®) (n=10 healthy subjects), and platelet function analysis (PFA100®) in citrated platelet rich plasma (PRP) were assessed. In a well-established baboon thrombosis model a collagen-coated PTFE graft (length 2 cm, lumen 4 mm) was placed in an arterio-venous shunt. Prior to blood contact the thrombogenic surface was treated for 10 min with UFH or APL001 (both at 4 mg/mL). Thrombus formation was initiated by exposing the surface to blood flow (100 mL/min, shear rate 265−1), and the deposition of 111-In-labeled platelets and of fibrin was quantified continuously over 1h. Fibrin thrombus accumulation was assessed from the incorporation of circulating 125-I-fibrinogen. In the heparin-relevant coagulation tests APL001 was comparable or 20–30% more potent than UFH while FVIII, fibrinogen and VWF variables remained unaltered. In contrast to UFH, APL001 (300 μg/mL) consistently inhibited collagen- and ristocetin-induced platelet aggregation, whereas UFH had only a modest effect in comparison with PBS control (Table). ADP-induced aggregation was unaffected. Comparable results were observed in the PRP aggregation assay. PFA100 testing also demonstrated inhibitory effects. In the in vivo thrombosis model (n=4) APL001 reduced platelet deposition on collagen (vs. the results with UFH) by 34% (p=0.01), while platelet accumulation in distal propagated thrombus was reduced by 61% (p=0.16). APL001-treated surfaces accumulated 45% less fibrin than the UFH-treated surfaces (p=0.008). In conclusion, when compared with UFH APL001 inhibited both collagen- and ristocetin-induced platelet aggregation in human blood, while anticoagulant properties were comparable. In the absence of systemic antithrombotic drugs, exposure of APL001 to a highly thrombogenic collagen surface arrested thrombus formation in an in vivo baboon model. This finding suggests that locally administered APL001 alone, due to its dual antiplatelet and anticoagulant effects, may limit the growth and size of thrombus and thereby prevent subsequent thrombo-occlusion.TableAnticoagulantInhibition-% of platelet aggregation ± SDConc. 300 μg/mLnColl (3.2 μg/mL)Ristocetin (0.77 mg/mL)ADP (6.4 μM)CitrateAPL0011033 ± 1543 ± 166 ± 24UFH1011 ± 1323 ± 153 ± 7p value0.0030.0100.700HirudinAPL0011032 ± 1043 ± 178 ± 10UFH108 ± 1116 ± 166 ± 9p value0.0000.0020.600 Disclosures: Lassila: Aplagon: Chief Scientific Advisor.


Sign in / Sign up

Export Citation Format

Share Document